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ABSTRACT 

In this thesis, we present a Markov-based probability model for a human operated 

system of aerial hunter-killers attacking time-sensitive targets. We explore the effect of 

two resources – time and supply of munitions – and some cognitive aspects of the human 

operator on the performance of the system in different operational scenarios. We model 

the combat mission as a sequence of engagements; each of which includes a classification 

process, followed by a firing decision, and a shooting process. The model of the 

classification process addresses possible effects of stress on the operator's behavior and 

performance. Two shooting tactics are considered. The random shooting tactic, which is 

memory-less and with no fire control, BDA capability or mission support systems, sets a 

benchmark for more effective shoot-look-shoot tactic, where resources are utilized more 

efficiently. The model represents various tactical parameters regarding rules of 

engagement and various mixes of resources. Applying the model on some real-world 

scenarios, we identify mixes of resources and tactical engagement rules that enhance the 

effectiveness and efficiency of the combat mission.  
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GLOSSARY 

Anti-Tank Guided Missile (ATGM): A PGM with warhead designed to penetrate 
armored vehicles. ATGM can be operated from either the surface or from the air. 

Battle Damage assessment (BDA): “The estimate of damage resulting from the 
application of lethal or nonlethal military force” [42]. 

Hunter-Killer (HK): A weapon system, which carries integrated sensors and lethal 
weapon system, and is capable of acquiring a target and attacking it, independently of 
other systems. 

Precision Guided Munition (PGM): A lethal weapon which uses sensor and navigation 
system to acquire a target and to hit it with high probability. The guidance can be 
autonomous or human-piloted. Adopted from [42]. 

Stand-off Weapon: A weapon which is fired in a large distance away of the target, such 
that there is no high threat to the shooting platform. 

Time-Critical Targets (TCT): Those targets requiring immediate engagement because 
they pose (or will soon pose) a significant danger to friendly forces. Adopted from [6]. 

Time-Sensitive Targets (TST): “Those targets requiring immediate response because 
they pose (or will soon pose) danger to friendly forces or are highly lucrative, fleeting 
targets of opportunity” [42]. 

Transporter, Erector, Launcher and Radar (TELAR): A vehicle that carries both 
surface to air missile launcher and radar system—a full system which can intercept air 
vehicles autonomously of other weapon systems. 

Unmanned Combat Air Vehicle (UCAV): A powered, aerial vehicle that does not carry 
a human operator, and carries a lethal weapon system. Adopted from [42]. 

 



 xxii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xxiii

ACKNOWLEDGMENTS 

I would like to thank my thesis advisors, Professor Moshe Kress, and Professor 

Kyle Lin, for their devoted work in helping me conceptualize the ideas in this work and 

present them in a highly readable way. Their contribution in hours of discussions about 

how to structure the model, and in numerous revisions of the text was essential to reach 

this result. So was the contribution of the second reader, Professor Patricia Jacobs, in the 

last effort to finalize this project. 

I would also like to thank the governments of Israel, Singapore and the United 

States of America for making my education at NPS possible. It has been a significant 

experience and excellent professional education. 



 xxiv

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xxv

EXECUTIVE SUMMARY 

Hunter-Killer weapon systems combine sensors and lethal weapon, and can attack 

targets without coordination with other weapon systems. These systems are one of the 

means for dealing with time-sensitive targets. The importance of the capability to deal 

with time-sensitive, and time-critical targets increases as weapon systems become more 

mobile and evasive. The targets typical for the recent War on Terror are time-critical in 

nature. 

We consider a mission in which an aerial hunter-killer is sent to classify and 

attack valuable targets in a set of suspicious target sites, which are detected by other 

intelligence sources. The operational scenario determines a set of mission parameters, 

which includes the number of sites and valuable targets, the time available for the 

mission, and the capabilities of the sensor, the human operator, and the weapon. 

When engaging a site, the hunter-killer operator performs a classification process, 

and decides whether to acquire the target in the site, or to pass over it. If the operator 

decides to acquire the target, he attacks the target according to a certain shooting tactic. 

We are particularly interested in the tactical aspects of the mission planning by 

the mission planner, and in the cognitive and tactical aspects of the mission execution by 

the operator of such an aerial hunter-killer. 

At the beginning of the mission, the mission planner determines the following 

parameters: 

1. Amount of munitions; 

2. Number of engagements to be executed; 

3. Length of the classification window, which is the time allocated for 
classifying the target; 

4. Firing policy which guides the operator how to choose a firing tactic: 
whether to attack or not absent classification (when the target is not 
classified during the classification window). 

These parameters control the expected outcome and duration of the mission. 



 xxvi

We model the classification process as a discrete-time Markov chain, in a way 

that it can utilize data obtained from controlled field experiments. We use this model to 

explore the effects of skill and speed of performance of the operator under time stress. 

We describe two shooting tactics—Persistent and Random—by discrete-time 

Markov chains. In the Persistent shooting tactic the shooter engages targets sequentially, 

and during each attack he keeps on shooting at the target, using shoot-look-shoot 

strategy, until the target emits signs of being killed. The number of shots is limited by the 

number of munitions allocated for the attack. In this shooting tactics each site is engaged 

(classified) only once. In the Random shooting tactic the shooter chooses the target 

randomly on each engagement, and fires at the target only once. 

We then combine the classification model and the shooting model into a unified 

Markov chain model that describes the complete mission for the two cases – Persistent 

and Random. The Persistent shooter uses a mission support system, which allows him to 

dynamically adjust the firing policy and the number of munitions allocated for each 

engagement throughout the mission. The Random Shooter does not have a mission 

support system and therefore all the engagement parameters are set in advance.  

We use the combined model to explore two operational scenarios for a UCAV 

conducting hunter-killer missions. In the first scenario, a UCAV is sent to destroy a 

fleeing enemy rocket launcher before it retreats to its hiding place; in the second scenario, 

a UCAV needs to destroy enemy's surface-to-air battery before a deadline. Through these 

two scenarios, we demonstrate how the mission planner can enhance the outcome of the 

mission by adjusting the parameters he controls; and study how different scenario 

parameters, such as the fraction of targets that are valuable, influence the mission plan 

and the mission outcomes. We also explore the effect of operator's behavior and shooting 

tactics on the overall mission performance. We show that different operator archetypes 

perform well under different mission plans and conditions. Stressful conditions, which 

may change the operator’s behavior and hence capabilities, may degrade the effectiveness 

of the mission. This observation suggests that a robust mission plan should address also 

the uncertainty regarding the operator’s human factors. 
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I. INTRODUCTION 

A. BACKGROUND 

1. Time-Sensitive Targets and Hunter-Killer Systems 
Time-sensitive targets (TST) appear in land, air and naval warfare. Examples of 

TSTs are: tanks in land warfare, ballistic missile launchers in air warfare, and 

approaching submarines in the sea. Once they pop-up, TSTs require immediate attention 

and response by the weapons that engage them. As time is critical, coordinating a 

response of several weapons or military units is a major command and control challenge. 

One possible approach to cope with TSTs is to use hunter-killer systems (HK), which 

combine a sensor and a warhead, and can respond to TSTs almost independently of other 

forces and weapon systems. The simplest example of a hunter-killer weapon is an 

infantry soldier, who can use his human sensors (eyes and ears) to identify the target, and 

his personal weapon to kill it. This sensor-weapon combination, which is common and 

relatively easy to implement in land and naval warfare, mainly because of lesser design 

constraint, has been a technological challenge in the air. Only recently, significant hunter-

killer capabilities were adapted to air vehicles. Although in this research we focus on 

unmanned aerial hunter-killer systems, the model may be applicable also to other cases of 

hunter-killer missions. 

2. Aerial Hunter-Killer in Modern Air to Ground Warfare 
Mobile systems, such as surface to air batteries, ballistic missile launchers and 

mobile command and control units, are valuable assets in the modern battlefield, and 

usually available in small quantities. Hence, an attractive way to interdict them is taking 

the direct approach, destroying them physically, rather than fighting them indirectly to 

suppress their effectiveness. Locating and attacking this type of mobile time-sensitive 

target play important parts in air-to-ground operations [1]. The general locations of these 

targets are usually obtained by cues from theater surveillance sensors, such as satellite 

imagery, synthetic aperture imaging radars, ground movement indicator radars or signal 

intelligence sensors. However, these cues, which may give the location of the targets in 

space and time, may suffer from poor classification and identification capabilities and 

delays. Thus, to identify and locate TSTs the shooter requires near real-time refinement 
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and tracking, to facilitate an attack by accurate munitions. As these are valuable targets, 

battle damage assessment (BDA) is essential to verify that a target is killed. This 

sequential process of dynamic targeting is known as Find, Fix, Track, Target, Engage and 

Assess, or F2T2EA in short [2]-[7]. Another common term for this target engagement 

process is the kill chain [2]. The increasing mobility of targets, low availability of cueing 

opportunities due to camouflage and guerilla tactics, the clutter of a dense battlefield and 

increasing use of dummies, make this process a tedious, resource consuming effort, 

during which the attacking assets are not active for a long time and may be sent to attack 

worthless targets or empty sites [1] and [7]. 

Recent technological developments enable attacking assets, such as fighter planes 

and precision guided munitions, to be equipped with intelligence, surveillance and 

reconnaissance (ISR) sensors, and communication capabilities. This mix of capabilities, 

which is manifested in unmanned combat air vehicles (UCAVs), such as the US Air 

Force's MQ-1/MQ-9 Predator A/B [8], and advanced fighter planes equipped with 

targeting pods, such as LANTIRN, Litening or Sniper [9], allows simplifying and 

parallelizing the F2T2EA process and increases the rate at which valuable time-sensitive 

targets are located and attacked [10]. UCAVs and advanced fighter aircrafts can classify 

and track their targets using their onboard sensors, and subsequently attack these targets. 

The sensors can also provide BDA on the success of the attack [10]. Thus, a single aerial 

hunter-killer platform performs all but perhaps the first stage (Find) of the F2T2EA 

process. The effective combination of weapons and sensors in a single platform may be 

even more crucial in coping with time-critical targets (TCT) typical in the War on Terror. 

Targets in this setting may dissolve a short while after detection, as in the case of 

terrorists in Afghanistan and rocket launchers in Gaza Strip and Lebanon [11]. 

Compressing the kill chain is a well recognized need [10]. Hunter-killers, and 

especially UCAVs, are considered as one of the most promising responses to that need 

[10]. In order to engage a time-sensitive target, the attacker should be able to see it when 

it is detected, and to attack it without delay. Although each aircraft has limited endurance 

and payload individually, a force of aerial hunter-killers has no inherent limit on the 

endurance and munitions available for a specific mission. In theory, a relieving air 

vehicle (under logistic constraints) can always be sent on time to respond to endurance or 
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munitions shortage (if unexpected failures are ignored). While this fact is true for any 

aircraft, it is much easier to implement with unmanned air vehicles, thanks to their longer 

endurance, and the fact that the relief of a vehicle does not affect the operator, which 

improves the continuity of the mission (if effects of operator's fatigue can be ignored and 

more than one vehicle can be flown at a time). The time limit on the mission is derived 

from the expiration time of the cueing intelligence which initiates the mission, and from 

the fact that in large operations, many missions compete for UCAV resources 

simultaneously and therefore a mission may be aborted in lieu of another mission. 

Similarly, the limitation on munitions utilization in a mission is derived from a limited 

arsenal of accurate munitions, the number of other targets that should be attacked in other 

"competing" missions, and logistical constraints related to arming many UCAVs with 

many munitions. 

The relatively long endurance of UCAVs, the fact that they can loiter close by to 

the targets, their high survivability, and the relatively high tolerance to their losses make 

UCAVs a potentially very effective hunter-killer weapon system for anti-TCT missions 

[8] and [11]-[15]. 

Without any onboard sensor, or when operating a stand-off weapon, the only 

battle damage assessment (BDA) conducted by pilots and operators is an evaluation 

whether the weapon fired hit the target or missed it, considering a hit as a kill. A possible 

error in this case is identifying live (surviving) targets as killed [2], [16] and [17]. The 

sensors on-board UCAVs and the enduring stand-in operation of these platforms allow 

the operator to perform a more thorough BDA, based on observing positive visual or 

other indications of a kill. When conducting such visual post attack BDA, the 

engagement may last longer. In some situations the evidence of a kill following a hit is 

apparent almost instantaneously because of fire, smoke or sympathetic explosions (See 

Figure 1 below). If there is no evidence of a kill, the target is considered alive. In this 

case of post-engagement BDA, a possible error is “false negative”; while live target 

would never be considered as killed, a killed target may be considered as alive, when no 

evidence of a kill is present.  
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Another important potential of UCAVs as hunter-killers is the capability to 

incorporate advance fire control and operational aid systems, which can easily fit in a 

ground control unit (GCU), but hardly in a cockpit of an aircraft. By making mission 

related data available in a user-friendly and intuitive way, advanced mission support 

systems can help the operator manage the main mission resources—time and 

munitions—in an efficient way. 

 

 
Figure 1.   Evident Kill of a Hizballah's Multiple Rocket Launcher Captured by Israeli 

ISR Aerial Asset. 
(Source: Israel Defense Force Web Site. Downloaded on 13 August 2006 
URL: http://www1.idf.il/SIP_STORAGE/DOVER/files/0/56510.wmv) 

Fire and secondary explosions are apparent 3–5 seconds after the vehicle was hit, 
indicating an assured kill.  

 

There are several known aerial hunter-killer projects, all based on unmanned 

platform. A few examples are: The RQ-9 Reaper, which is an armed UAV formerly 

known as "Hunter-Killer" [8], the CUTLASS, suggested by Raytheon [18], Lockheed 

Martin's Loitering Attack Missile (LAM) [19], and the US Army Confirmatory Hunter-

Killer System, which is designated as anti-TCT weapon for urban warfare [20]. 

 

B. PROBLEM STATEMENT 

1. Balance Resources in HK Missions 
We consider a Hunter-Killer (HK) equipped with high-resolution, real time 

imaging sensor which is used for target classification and BDA, and a weapon system 
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consisting of precision guided munitions. The HK platform may carry additional sensors, 

which are used for target detection and cueing. We do not consider these capabilities as 

part of the mission in our problem. We focus on the stages after a set of possible targets’ 

sites has been identified, and the mission is to engage suspicious targets in those sites, as 

described below. The HK is operated by a human operator, that selects the target sites for 

engagement, visually classifies the engaged objects and decides whether to acquire it or 

to pass over it. If the target is acquired, then the HK attacks it, and he may perform a 

post-attack BDA. The term engagement describes a visit to a target site. Each 

engagement includes the target classification stage. Some engagements include also the 

attack stage. 

We consider a mission in which a single HK is sent to engage time sensitive 

targets. The operational setting determines the number of target sites, number of valuable 

targets in those sites and a general time frame for the mission, and the technical setting 

determines the HK capabilities such as classification accuracy and weapon lethality. The 

mission planner allocates to the HK munitions, determines the number of engagements to 

be executed, and sets the classification window, and the firing policy in accordance with 

the operational constraints and characteristics of the mission. During the mission, the HK 

operator utilizes these resources and instructions to kill the targets. In this research we 

explore how to allocate and use the HKs’ mission resources (time and munitions) such 

that the mission is executed effectively and efficiently. Throughout the thesis, we use the 

terms "hunter-killer" (HK), "operator" and "shooter" interchangeably. We consider two 

problems associated with the mission: 

1. Planning the resources allocated to the mission. 

2. Employing the resources during the execution of the mission. 

We focus on the effect of time on the operator’s performance, and the possible 

impact of stress on that performance. We also investigate the effect of memory and 

mission support systems to the overall performance. 

We explore different operational scenarios in terms of time availability, munitions 

availability and targets density to understand which performance aspects are important 

and when. 
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2. The Operational Setting 
Typically, attacking air-vehicles are not sent out to search a large area hoping they 

will find targets to engage. Prior to launching a HK for a combat mission, a detection 

process is performed by other sensors which provide a set of suspicious sites which may 

or may not be inhabited by valuable targets (VT)—targets that threaten friendly forces or 

civilians, or have high value for the enemy. VTs are the targets the HK is sent to kill. 

Because UCAVs cannot compete with real wide area surveillance systems such as 

JSTARS [21] and satellites, even without prior offline detection, geographical analysis 

and other basic intelligence techniques reduce the continuous area search problem into a 

problem of inspecting a finite number of suspicious sites 

Consider a HK that is sent on a mission to investigate a set of suspected target 

sites and to kill valuable targets that are found there. Assume that during the mission, the 

targets in the sites are stationary, such that a fixed number of sites contain valuable 

targets, and the rest contain worthless targets (WT). WT can be any object that may be in 

the site and be confused with a valuable target. Depending on the sensors quality and type 

of targets, WTs may be other military or civilian vehicles, dummy targets or even rocks 

or bushes. We assume that each site can contain at most one target, either VT or WT. The 

mission consists of a series of engagements of targets in the various sites. At each 

engagement, the HK operator picks a site, searches it, and classifies the object in the site 

as a valuable or worthless target. Then, according to the results of the classification, the 

HK attacks the target or continues to the next site. If the operator decides to acquire the 

targets, it is attacked in accordance to a shooting tactic (one shot, shoot-look-shoot, etc.) 

Examples for such missions are: 

1. Attacking suspected artillery sites, detected by artillery location radar. 

2. Attacking forward deployed command posts detected by COMINT 
sensors. 

3. Attacking deployable SAM batteries detected by wide area SAR imagery. 

One goal is to maximize the rate at which targets are classified and engaged 

because prior intelligence regarding the sites may become irrelevant with time, and other 

missions for the HKs may wait in the pipeline. This goal is attained by minimizing the 

duration of each engagement. The mission planner controls the duration of the mission by 
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setting a limit on the number of engagements to be performed, and by controlling the 

length of each engagement. Because the time allocated to each engagement may be 

limited, the operator is subject to a time constraint on the decision process whether to 

attack the target in the site or to abandon it. This time limit may affect the probability that 

the operator classifies the target correctly.  

It is also reasonable to assume that the number of munitions allocated for the 

mission is fixed, so munitions should be utilized efficiently in order to maximize the 

number of valuable targets killed. In view of the munitions’ constraint, another goal is to 

minimize the number of false-positive classifications, which result in wasted munitions. 

Because the accuracy of the classification process depends on the time spent on 

investigating the site, these two goals—minimizing the duration of the engagement and 

minimizing the number of misclassified targets—are in a conflict. 

3. Relevance to Other Operational Scenarios 
While our operational setting is UCAV-oriented, it is actually applicable, with 

some assumptions, to other HK scenarios. The main difference is the fact that many other 

hunter-killers operate as a group of shooters. Thus, our model is adequate in the case 

where there is perfect coordination between the shooters; at least subsets of the targets are 

attacked sequentially; and when survivability issues are not of great concern. Examples 

for such a mission are attack helicopters attacking mobile targets with anti-tank guided 

missiles (ATGMs), and a ground unit attacking armor line using ATGMs. 

 

C. LITERATURE REVIEW OF MODELING HK MISSIONS  
The emerging role of UAVs in the battlefield, and the wide interest in armed 

UAVs, and in autonomous loitering munitions, stimulate many research efforts, which 

are briefly described below. 

1. Operator as a Target Classifier  
The Army Research Laboratory has a long legacy in developing models for 

soldier capabilities in target acquisition scenarios [22]. Though most of the models are 

"engineering models", referring to the soldier as a sensor, some ideas concerning the 

effects of stress and time on the target-acquisition performance of the soldier are similar 

to those we use in this thesis. 
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An Air Force University project [23], which optimizes a coordinated search and 

classification process of several micro air vehicles (MAV) operated by a single operator, 

addresses the issue of operator think time, which is similar to our classification time.  The 

think time is modeled by a modified Gamma distribution. The time pressure is captured 

through queuing of the multiple reports arriving from the MAVs. The cognitive aspects 

of stress are not addressed in the model, which focuses more on the optimization of the 

MAV routing. Similar approach of modeling target classification time with Gamma 

distributions was applied in [24] where friendly and hostile ships are detected and 

classified under time constraints. 

Model for cooperating autonomous HKs in a mission with imperfect classification 

process was suggested in [25], where the classifications are instantaneous. 

2. Shooters with Imperfect BDA 
Following an exploration of shooting tactics in the presence of imperfect BDA 

[26] and [27], we model the HK using a shoot-look-shoot tactic called persistent shooter, 

in which the attacker attacks a target with a shoot-look-shoot salvo, and never engages 

this target again. We use a heuristic for optimal munitions allocations developed in [26]. 

Without time constraints, the greedy shooting tactic, or cyclic shooter who shoots at the 

perceived line targets in round-robin fashion was proven to be optimal [27]. We do not 

consider this shooting tactic, as operationally it is difficult to implement and when target 

acquisition is taken into account, this tactic seems inferior to persistent shooting tactics.  

3. HK Mission 
Complete models of HK mission are suggested in [25] and [28]. The first model 

describes a mission of a group of disposable HKs attacking a set of targets, including 

imperfect classification and BDA. Engagements time is addressed in that model, though 

target acquisition is modeled as instantaneous. 

The second model presents a coordinated/single UCAV search and attack 

mission. The research focuses more on wide area search with different target 

distributions, and does not refer to the details of the engagements. 
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4. Main Contributions of This Thesis 
In this research, we expand the models discussed above in the following aspects: 

1. Introducing a model for human-operator classification process. The 
parameters of the model may be estimated from field data. 

2. The classification model represents possible behavioral effects of stress in 
the operator’s decision making. 

3. The classification model addresses the relations between mission 
parameters, such as firing policy and limited classification window, and 
cognitive effects. 

4. The Persistent shooting tactic is presented within a complete mission 
context, while addressing mission uncertainties. 

5. The complete mission model addresses engagements of a finite set of 
target sites rather than search for targets of opportunity in an arbitrary 
target distribution field. 

6. The complete mission model refers to operational planning aspects of the 
HK mission; these aspects are munitions allocation, time allocation and 
rules of engagement. 

 
D. STRUCTURE AND METHODOLOGY 

We start by modeling the two basic sub-processes of each engagement: the 

classification process and the shooting process. The classification process model, 

introduced in Chapter II, represents the cognitive aspects of operator's skills and speed of 

performance under time pressure. The shooting process model, presented in Chapter III, 

represents the effects of different shooting tactics based on mission support systems, such 

as fire control. We consider two shooting tactics. The benchmark tactic is random 

shooting, which assumes the operator is memory-less and uses no fire-control or mission 

support system. The second tactic is the Persistent shooter, which uses shoot-look-shoot 

tactic with limits on munitions consumption. This shooting tactic is used with an 

advanced mission support system which allows the operator to dynamically adjust 

tactical mission control parameter to enhance the mission performance. In Chapter IV, we 

introduce a discrete time Markov chain model that describes the entire mission, based 

upon the sub-processes developed in Chapters II and III. In Chapter V, we explore 

different operational scenarios to evaluate the effects of the operator’s classification  
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capabilities and shooting tactics, and to determine how the model can be used to improve 

the resource allocation process done by the mission planner. Concluding remarks and 

main insights are given in Chapter VI. 



11 

II. MODELING THE TARGET CLASSIFICATION PROCESS 

In this chapter we present a model for the classification process conducted by a 

HK operator. First we discuss the operational setting of the process. Then, we introduce a 

model, which captures cognitive effects of pressure in the time constrained classification 

process. Based on this model, we introduce a discrete time Markov chain that calculates 

the probabilities for the outcomes of the process. The chapter concludes with examples of 

specific operator archetypes. 

 

A. DESCRIPTION OF THE PROCESS 
Once the operator detects an object in a site, he attempts to classify it as a VT or a 

WT. The classification process takes time, and this time is limited to a specified 

classification window, which is determined by operational considerations such as the time 

criticality of the mission and the endurance of the HK platform. The classification 

process of a certain object ends if 

(a) The operator makes a decision regarding the classification of the object 
(VT or WT) before the classification window is over. 

(b) The classification window is over. 

The end result of the classification process is one of the three following events: 

1. A decision that the site contains a valuable target (VT). 

2. A decision that the site contains a worthless target (WT). 

3. The classification window is over and there is no decision 

For given operator’s capabilities, operational and environmental settings, and 

classification window, we are interested in specifying the conditional probabilities of 

these events, given a target of a certain type (VT or WT) is present in the site. In Section 

C a probability model is developed for the classification process in which we explicitly 

represent the dependency of these probabilities on the time it takes the operator to 

classify an object. The parameters of the proposed model can be estimated from data 

obtained from controlled experiments, as discussed later on. 



12 

Clearly, events 1 and 2 follow from termination condition (a), and event 3 follows 

from termination condition (b). Event 1 results in firing at the target, event 2 results in 

leaving the current site and traveling to another site, and event 3 may lead to either 

engaging the target or abandoning it, as discussed next.   

1. Firing Policy 
In the case of event 3, when the classification window ends before the operator 

reaches a decision, the operator acts according to a firing policy, which directs him what 

to do regarding the unclassified target—to engage it or to abandon it. We consider two 

possible firing tactics: a greedy tactic or a cautious tactic. The firing policy determines 

how the operator chooses between these tactics. 

Greedy Firing Tactic: According to this tactic, the target is attacked, as there is 

not enough evidence to reject the assumption that the object is a VT. A firing policy 

which prefers this tactic will cause more collateral damage and waste of ammunition than 

a policy which prefers the cautious tactic, but might result in more attacked VTs during 

the limited duration of the mission. Therefore, this tactic may be preferred in situations 

when time is scarcer than ammunition, and there is little penalty for attacking  

WTs. 

Cautious Fire Tactic: According to this tactic, the target is not attacked, as there is 

not enough evidence to consider it to be a VT. A firing policy which prefers this tactic 

will reduce collateral damage and waste of ammunition. It might cause more VTs to be 

ignored during the mission, resulting in wasted opportunities to kill these targets. This 

tactic may be preferred in situations when time is less scarce than ammunition. 

The choice of the firing tactic is adjusted, according to the battle situation, (in 

terms of the firing policy) by the mission planner and the operator. It may also be 

dynamically optimized as a function of the system state. 

 

B. COGNITIVE ASPECTS OF DECISION MAKING UNDER 
UNCERTAINTY AND TIME CONSTRAINT 
The introduction of a classification window makes the classification process one 

of risk taking decision making made under time pressure. 
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There are two competing general approaches for modeling the decision making 

mechanism or cognitive aspects thereof [29]. One approach follows the Rationalist 

Paradigms. In models based on this approach, the decision maker, who has a set of 

alternatives and an objective, chooses his subjectively optimal alternative according to 

the objective. Research, however, has shown that a human decision maker is subject to 

biases, which make his choice of the alternative sub-optimal or wrong [30]. Most of the 

research on this approach is focused on cognitive and behavioral aspects of judgments 

and biases of human logic. Issue such as dynamic aspects of the decision, time effects or 

models for decision mechanism are not captured by the Rationalist approach and 

therefore it is less appropriate for modeling the dynamic cognitive process of decision 

making, as in our case. 

The second approach is the Naturalistic Decision Making (NDM). According to 

the NDM, the decision maker does not have a structured decision problem in his head, 

with well-defined objective and complete set of alternatives, but rather uses heuristics, 

intuition and experience [31 and 32] to decide. The NDM is said to be more realistic than 

the Rationalist Paradigm for modeling real-time decisions under stress made by experts 

[29]. The NDM models describe a dynamic cognitive process that imitates real-life 

decision maker behavior. Unfortunately, no adequate model for target classification under 

time pressure could be found in the literature. According to Ariely and Zakay in [33], the 

effect of time constraints on decision making has not been widely reported in the open 

literature. A similar conclusion is found in [34], which indicates the need for further 

research. 

Bronner [35] states three factors that influence the existence and magnitude of the 

time pressure effect: 

1. Decision time: Time limit on the decision process, which the decision 
maker is aware of and understands the consequences of its violation. 

2. Sensitivity: The decision maker’s cognitive and behavioral sensitivity to 
time pressure. 

3. Problem Intensity: The complexity and difficulty associated with the 
decision problem. 
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As the decision problem becomes more complex, as the time limit becomes 

smaller, and as the decision maker’s personality is more sensitive to time pressure, the 

decision is more likely to differ from the one obtained in a more relaxed environment 

[35]. 

Dror et al., [36], report that participants in a decision making experiment behaved 

differently when exposed to time pressure. The participants were playing a Blackjack-like 

game, and the time for their decision was limited. When experiencing time pressure, their 

decision regarding low-risk cases were more conservative, i.e., the participants became 

more hesitant. In high-risk cases, the participants were more daring, i.e., became hastier. 

Ariely and Zakay [33] report on a study by Ariely and Amir1 about the effects of 

expiring on-line shopping coupons on shopping behavior. They conclude that short-term 

coupons do not increase the shoppers' propensity to purchase in comparison with non-

expiring coupons due to hesitance caused by the perception that a hasty decision may be 

wrong. Coupons with longer expiration period significantly increased the shoppers’ 

decision rate and their propensity to purchase the product. 

Numerous studies regarding the game of chess, e.g., [37] and [38], indicate that 

players utilize different skills under time pressure. Better players (higher graded masters) 

are less affected by time stress due to superior skills in “fast mechanisms,” such as 

pattern recognition, according to which they can remember a large set of board states or 

“patterns” and generate appropriate reactions. Some conclude that the fast mechanism is 

more likely to explain the differences among high-level players, where skills in slow 

mechanisms, such as searching through future moves, are about the same [37]. 

Nevertheless, these studies focus on recognizing the decision mechanisms and their roles 

and not on rating the players' performance as time pressure increases. 

Additional research [34], [39], and [40] shows that time pressure causes changes 

in the cognitive processes associated with decision making and judgment, and affects the 

accuracy of the decisions, and the tendency to make them. 

                                                 
1 On Amir and Dan Ariely, “The effect of expiring coupons on decision making,” Technical Report, 

Massachusetts Institute of Technology, 2000. Report was not published. 
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Using the insights from these studies, we assert that time constraints affect the 

operator's classification performance. The effect of the time pressure, or stress, depends 

on the personality of the operator, on his training, and on the environmental conditions of 

the mission such as the type of targets, the capabilities of the sensor and the background 

clutter. When the time is perceived by the operator to be insufficient for performing the 

classification; the operator may become stressed, which may affect his behavior and his 

performance. We assume that depending on the operator personality, there is a duration 

of the classification window, which if he perceives it to be too short, will cause him to 

become stressed. When that happens, the operator may either get hasty, i.e., decide 

recklessly too fast and make bad decisions or hesitant, i.e., tend not to decide during the 

classification window. The more skillful and experienced the operator, the shorter the 

classification window that he may endure. 

 

C. PROBABILITY MODEL FOR THE CLASSIFICATION PROCESS 
In this section we introduce a probability model which represents the 

classification process done by an operator. We start with a general behavioral model, and 

then develop more detailed models that represent the cognitive process of specific 

operator archetypes. The parameters of the general model can be easily estimated with 

data obtained from controlled field experiments. 

1. The End States of the Classification Process 
The classification process terminates in a decision to open fire on the target, or to 

abandon it. The decision depends on the classification result, if such a result is obtained 

during the classification window, or on the firing tactic (greedy or cautious) otherwise. 

Our first model represents the outcomes of the classification process of an object—

acquire or pass over—and ignores the cognitive aspects behind it. 

Let ( )| ,YP F A T  and ( )| ,YP O A T  denote the probability of firing at the object, or 

passing over it, respectively, when engaging a target of type A (A = VT for valuable 

target, WT for worthless target), having classification window of length T and applying 

firing policy Y (Y = C for cautious, G for greedy). For a given classification window T, 

the eight combinations of two firing policies (C and G), two possible decisions (F and O), 
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and two target types (VT and WT) fully probabilistically describe the outcome of the 

classification process. These probabilities can be estimated directly from observations of 

controlled field experiments. 

We assume a discrete-time model where the classification process is sampled at 

discrete time steps, starting at time zero. Let D =D(T,Y) be a discrete random variable, 

which denotes the time it takes the operator to make a classification decision, given a 

classification window of length T, and firing tactic Y. If D T≤  then the operator makes 

a decision (end-state 1 or 2 in Section A above). If D>T then the target is not classified 

because the classification window expires (end-state 3 in Section A above). 

Define the following events with respect to the operator: 

VT :  Examining a valuable target (VT). 

WT :  Examining a worthless target (WT). 

mVT :  Classifying a target as valuable. 

mWT :  Classifying a target as worthless. 

{ }ˆPr ( , ) , |D T Y t A A=  is the probability that the operator classifies correctly a 

target of type A during the tth time interval of the process, t T≤ , 

{ }ˆPr ( , ) 0, | 0D T Y A A= = . Similarly, { }ˆPr ( , ) , |CD T Y t A A=  is the probability that the 

operator classifies incorrectly a target of type A during the tth time interval. These 

probabilities can be estimated by controlled experiments. The probability that the 

operator, who is classifying a target of type A, makes a classification decision during the 

tth time interval, t T≤ ,  is  

{ } { } { }ˆ ˆPr ( , ) | Pr ( , ) , | Pr ( , ) , |CD T Y t A D T Y t A A D T Y t A A= = = + = . 

Let the conditional probability that the operator makes a classification decision 

during the tth time interval given that a classification decision was not made earlier, when 

classifying a target of type A with classification window T and firing tactic Y be denoted 

as 
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Let the conditional probability of correctly classifying a target of type A, given a 

classification decision was made during the tth time interval be denoted as 

(2) 
{ }
{ }

,
ˆPr ( , ) , |
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T Y
A
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q t

D T Y t A

=
=

=
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For the sake of simplifying the notation, we omit from now on the superscripts T 

and Y. 

2. Discrete Markov Chain Model 
The key parameters that describe the classification process are the conditional 

probability of making a decision, ( )Ad t , and the conditional probability of a correct 

decision, ( )Aq t . The classification process is described by the set of transient states t , 

0 1t T≤ ≤ − , the number of time steps since the beginning of the classification process. 

Another set of states includes the absorbing states, which describe the classification 

results: 

F  if the operator decides to fire at the object either because he has classified it as VT 

or because the classification window is over and the firing tactic is greedy. 

O  if the operator decides to pass over the object either because he has classified it as 

WT or because the classification window is over and the firing tactic is cautious. 

a. State Transitions 

Figure 2 shows the state transition structure of the Markov chain. At each 

time step there is either a transition to an absorbing (decision) state (O or F) or to a 

transient state, which is the next time step. At the last transient step, T-1, the only 

possible transition is to one of the two absorbing states, as the classification window is 

over. 

Assume at first a cautious firing tactic. For an engagement of a VT, the 

following state transitions are possible: 
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1. ( ) ( )1 , 0 1t t t T→ + ≤ < −  

if the classification process is still on at time t+1, with probability ( )1 1VTd t− + . 

2. ( ) ( ) , 0 1t F t T→ ≤ ≤ −  

if the target is classified correctly at the t+1 time step, with probability 

( ) ( )1 1VT VTd t q t+ + . 

3. ( ) ( ) , 0 1t O t T→ ≤ < −  

if the target is classified incorrectly at the t+1 time step, with probability 

( ) ( )( )1 1 1VT VTd t q t+ − + . 

4. ( ) ( )1T O− →  

if the target is classified incorrectly at the T time step, or no decision is reached during 

the classification window, with probability ( ) ( )( ) ( )1 1VT VT VTd T q T d T− + − . 

 

 
Figure 2.   State transition diagram for the classification process as a Markov chain. 

 

The following transition matrix is obtained: 
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Let R be the sub matrix of MVT (C) which rows correspond to the transient 

states, and columns to the absorbing states and let Q be the sub matrix of MVT(C), which 

rows and columns correspond to the transient states, as shown in Equation 3.  

The engagement starts at state 0t = . 

Then, ( ) ( )
1

1

00
|

T

C jF
jj

P F VT I Q R
−

−

=

⎡ ⎤= −⎣ ⎦∑ . 

Notice that ( ) 1

0
, 0,1,..., 1

j
I Q j T−⎡ ⎤− = −⎣ ⎦  is the first row of the inverse 

of a bi-diagonal matrix, where all diagonal entries are equal to 1, and all of the off-

diagonal entries are negative. It is easily seen that 
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=
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For the classification of a WT the following state transitions are possible: 

1. ( ) ( )1 , 0 1t t t T→ + ≤ < −  

if the classification process is still on at time t+1, with probability ( )1 1WTd t− + . 
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2. ( ) ( ) , 0 1t F t T→ ≤ ≤ −  

if the target is classified incorrectly at the t+1 time step, with probability 

( ) ( )( )1 1 1WT WTd t q t+ − + . 

3. ( ) ( ) , 0 1t O t T→ ≤ < −  

if the target is classified correctly at the t+1 time step, with probability 

( ) ( )1 1WT WTd t q t+ + . 

4. ( ) ( )1T O− →  

if the target is classified correctly at the T time step, or no decision is reached during the 

classification window, with probability ( ) ( ) ( )1WT WT WTd T q T d T+ − . 

The following transition matrix is obtained: 

( )

( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( )

0 1 2 2 1
0 0 1 1 0 0 0 1 1 1 1 1
1 0 0 1 2 0 0 2 1 2 2 2
2 0 0 0 0 0 3 1 3 3 3

2 0 0 0 0 1 1 1 1 1 1 1
1 0 0 0 0 0 1 1

0 0 0 0 0 1 0
0 0 0

WT WT WT WT WT

WT WT WT WT WT

WT WT WT WT

WT

WT WT WT WT WT

WT WT WT WT WT

T T F O
d d q d q

d d q d q
d q d q

M C
T d T d T q T d T q T
T d T q T d T q T d T

F
O

− −
− −

− −
−

=

− − − − − − − −
− − + −

"
"
%
%

# # # # # # # # #
"
"
"

0 0 0 1"

 

(5) 

( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )

( )( )

1 1
1

00 0 0

1 1
1

00 0 0

1

| 1 1 1 1

| 1 1 1

1

jT T

C jF WT WT WT
jj j t

jT T

C jN WT WT WT
jj j t

T

WT
t

P F WT I Q R d t d j q j

P O WT I Q R d t d j q j

d t

− −
−

= = =

− −
−

= = =

=

⎡ ⎤= − = − + − +⎣ ⎦

⎡ ⎤= − = − + + +⎣ ⎦

+ −

∑ ∑∏

∑ ∑∏

∏

 

Assume now a greedy firing tactic. For engagement of a VT, there is a 

change in the following transitions: 

1. ( ) ( ) , 0 1t F t T→ ≤ < −  

if the target is classified correctly at the t+1 time step, with probability 

( ) ( )1 1VT VTd t q t+ + . 
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2. ( ) ( ) , 0 1t O t T→ ≤ ≤ −  

if the target is classified incorrectly at the t+1 time step, with probability 

( ) ( )( )1 1 1VT VTd t q t+ − + . 

3. ( ) ( )1 ,T F− →  

if the target is classified incorrectly at the T time step, or no decision is reached during 

the classification window, with probability ( ) ( ) ( )1VT VT VTd T q T d T+ − . 

Thus, the following transition matrix is obtained: 

( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

0 1 2 2 1
0 0 1 1 0 0 0 1 1 1 1 1
1 0 0 1 2 0 0 2 2 2 1 2
2 0 0 0 0 0 3 3 3 1 3

2 0 0 0 0 1 1 1 1 1 1 1
1 0 0 0 0 0 1 1

0 0 0 0 0 1 0
0 0 0

VT VT VT VT VT

VT VT VT VT VT

VT VT VT VT

VT

VT VT VT VT VT

VT VT VT VT VT

T T F O
d d q d q

d d q d q
d q d q

M G
T d T d T q T d T q T
T d T q T d T d T q T

F
O

− −
− −

− −
−

=

− − − − − − − −
− + − −

"
"
%
%

# # # # # # # # #
"
"
"

0 0 0 1"

 

(6) 

( ) ( ) ( )( ) ( ) ( )

( )( )

( ) ( ) ( )( ) ( ) ( )( )

1 1
1

00 0 0

1

1 1
1

00 0 0

| 1 1 1

1

| 1 1 1 1

jT T

G jF VT VT VT
jj j t

T

VT
t

jT T

G jN VT VT VT
jj j t

P F VT I Q R d t d j q j

d t

P O VT I Q R d t d j q j

− −
−

= = =

=

− −
−

= = =

⎡ ⎤= − = − + + +⎣ ⎦

+ −

⎡ ⎤= − = − + − +⎣ ⎦

∑ ∑∏

∏

∑ ∑∏

 

For engagement of a WT, there is a change in the following transitions: 

1. ( ) ( ) , 0 1t F t T→ ≤ < −  

if the target is classified incorrectly at the t+1 time step, with probability 

( ) ( )( )1 1 1WT WTd t q t+ − + . 

2. ( ) ( ) , 0 1t O t T→ ≤ ≤ −  

if the target is classified correctly at the t+1 time step, with probability 

( ) ( )1 1WT WTd t q t+ + . 
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3. ( ) ( )1T F− →  

if the target is classified incorrectly at the T time step, or no decision was reached during 

the classification window with probability ( ) ( )( ) ( )1 1WT WT WTd T q T d T− + − . 

Thus, the following transition matrix is obtained: 

( )

( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( )

0 1 2 2 1
0 0 1 1 0 0 0 1 1 1 1 1
1 0 0 1 2 0 0 2 1 2 2 2
2 0 0 0 0 0 3 1 3 3 3

2 0 0 0 0 1 1 1 1 1 1 1
1 0 0 0 0 0 1 1

0 0 0 0 0 1 0
0 0 0

WT WT WT WT WT

WT WT WT WT WT

WT WT WT WT

WT

WT WT WT WT WT

WT WT WT WT WT

T T F O
d d q d q

d d q d q
d q d q

M G
T d T d T q T d T q T
T d T q T d T d T q T

F
O

− −
− −

− −
−

=

− − − − − − − −
− − + −

"
"
%
%

# # # # # # # # #
"
"
"

0 0 0 1"
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( ) ( ) ( )( ) ( ) ( )( )

( )( )

( ) ( ) ( )( ) ( ) ( )

1 1
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1
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| 1 1 1 1
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T
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G jN WT WT WT
jj j t

P F WT I Q R d t d j q j
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P O WT I Q R d t d j q j
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−
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=

− −
−

= = =

⎡ ⎤= − = − + − + +⎣ ⎦

+ −

⎡ ⎤= − = − + +⎣ ⎦
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b. Classification Duration 
Let S be the classification process duration. Since the classification 

process ends either when a decision is made or when the classification window expires, 

{ }min ,S D T= . The conditional probability distribution of S given a classification of 

target of type A is: 

{ }

{ }

{ }
1

0

Pr | , if  ,

Pr | 1 Pr | , if  ,

0, if  .

T

D t A t T

S t A D A t T

t T
τ

τ
−

=

⎧ = <
⎪
⎪= = − = =⎨
⎪
⎪ >⎩

∑  

The conditional expected duration of the classification process of target of 

type A is [ ] { } { }
1 1

0 0
| Pr | 1 Pr |

T T

t t
E S A t D t A T D t A

− −

= =

⎡ ⎤
= = + − =⎢ ⎥

⎣ ⎦
∑ ∑ . 
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The conditional expected duration of the classification process of target of 

type A given that a classification decision was made is 

[ ]
{ }

{ }
0

0

Pr |
| ,

Pr |

T

t
T

t

t D t A
E S A D T

D t A

=

=

=
≤ =

=

∑

∑
. 

The expected duration of the classification process can also be calculated 

using the transition matrices ( )AM Y . The classification ends at the first time step the 

system enters an absorbing state, thus { }( )min 1: ,nS n X F O= ≥ ∈  where nX  is the 

classification result (an absorbing state). Then, given the system starts at state ( )0 , 

(8) ( ) [ ] ( ) ( )( )
11 1

1

0,
0 1 0

, | 1
jT T

D Aj
j j t

A T E S A I Q d tμ
−− −

−

= = =

≡ = − = −∑ ∑∏ . 

3. Modeling Operator Archetypes 

In order to evaluate the effect of human factors on the overall mission 

performance, under various operational conditions, we consider two operator attributes: 

skill and confidence: 

1. Skill: How accurate the operator is in classifying an object, and how fast 
that accuracy can be achieved. 

2. Speed of Performance: How fast the operator tends to get confident 
enough to make a classification decision relative to the classification 
window. 

The skill of the operator reflects his training, experience and capabilities, while 

his speed of performance depends on his personality and self-confidence. We consider 

two skill levels and three types of operators based on their speed of performance, which 

result in six operator archetypes. The two skill levels are as follows: 

1. Expert Operator: an operator whose capability to accurately classify the 
target requires short time relative to the classification window available in 
normal operational circumstances, and classifies with high accuracy.  

2. Novice Operator: an operator who (objectively) needs more time for 
classification than the Expert, and whose classifications are less accurate 
than those of the Expert. 
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The three operator types in terms of speed are as follows: 

1. Balanced Operator: an operator who is likely to make a classification 
decision within the classification window, but late enough to utilize time 
as much as possible to obtain an accurate classification. 

2. Hasty Operator: an operator who rushes to conclusions, and is 
overconfident. Thus, he tends to make a classification decision very early 
within the classification window. 

3. Hesitant Operator: an operator who is unconfident and tends to postpone 
his decision longer than needed. Thus he is likely to not make a 
classification decision by the time the classification window expires. 

Hasty and Hesitant operators trade speed with accuracy. When the classification 

window is unbounded, Hesitant operator always performs better than the Hasty, but when 

the time is limited, he might not make a decision on time. Hasty operator has shorter 

classification duration and therefore he always makes a decision within the classification 

window, but many of these decisions are wrong. Balanced operator has a good balance of 

accuracy and classification duration to achieve high performance if the classification 

window is long enough. Sometimes he is too hasty, and decides incorrectly; sometimes 

he is unconfident, and doesn't make a decision on time; but on average, he makes a 

decision on time, as accurately as he can, based on his skills.  

Any real-world operator may exhibit Balanced, Hasty or Hesitant behavior under 

different scenarios and conditions of time pressure. 

Expert operators operate better than Novice operators with the same speed of 

performance. Not incorporated directly in the model is the fact that Experts are also more 

likely to maintain Balanced speed in stressful situations. 

We assume the following regarding the operator's classification process: 

1. The longer the classification window, the higher the probability of 
correctly classifying the object because more information regarding the 
object is available to the operator. 

2. As the classification time approaches the limit of the classification 
window, the probability of a decision increases. Thus the decision rate is 
increasing towards the end of the classification window. Thus, we assume 
that the classification duration has increasing-failure-rate distribution. 
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3. The time spent for classifying a worthless target has higher variance than 
the time spent for classifying a valuable target. This is due to the large 
variety of possible worthless targets. 

4. In general, it is reasonable to assume that the outcome of the classification 
process would depend on the firing policy. If the greedy policy is adopted, 
and the operator is in doubt regarding the type of object in the site, then 
his decision may be affected by his perception about the effects of type 1 
and type 2 errors. For example, if the operator is concerned about 
collateral damage, he may tend to classify the object as a worthless target, 
just to avoid engaging it because he knows that no decision will result in 
an attack. This perception depends on the situation and the personality of 
the operator, and it is unclear how it is influenced by the firing policy. We 
believe however that this is a second-order effect and therefore we ignore 
it in our operator model. Nevertheless, the model we introduced in Section 
3 above can capture this dependency. 

  
a. Classification Accuracy 

Before any information regarding the object is observed by the operator, 

the object can be one out of two possibilities: VT or WT. Assuming that the operator 

does not have information about the entire scenario, such as the number of VTs and WTs, 

the conditional probability of correct classification, given the target is of either type, is, 

then, 0.5. This assumption is quite reasonable when the operator perceives his chance to 

encounter a WT as high enough. As the operator spends more time classifying the target, 

the operator gains more information about it, and therefore the probability of correct 

classification increases. It is reasonable to assume that the probability of correct 

classification decision increases up to a finite limit, q∞ , which is determined by the taget 

characteristics and the operator's skills. 

After a sufficiently long time of observing the target, it is unlikely that the 

target will present new characteristics, which the operator can observe and base his 

decision upon. The rate by which the probability of accurately classifying the object 

approaches the performance limit, q∞ , is govern by the parameter t∗ , which represent a 

time in which most of the information regarding the target is likely to be observed by the 

operator. The operational settings determine a reference time for the classification 

window, Tref, which is the average decision time for unconstrained classification of a 

Balanced operator. It is a natural classification window for the specific type of target and 
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the operator's skill. The value of  t∗  for each skill level is determines by Tref as shown in 

Table 2. A classification window with length T = Tref allows high probability of accurate 

classification before the classification window expires. Imposing a classification window 

refT T<  limits the probability of correct classification, as per Equation 9, and may induce 

stress on the operator, such that he changes his behavior and confidence level. 

A possible model for the conditional probability of correct classification of 

a target of type A which captures this effect is 

(9) ( ) ( )0.5 0.5 1 A

t
tA

AQ t q e
∗−

∞

⎛ ⎞
= + − −⎜ ⎟

⎝ ⎠
 

A similar approach for modeling detection, classification and 

identification is taken in the “Night Vision Laboratory Search Model” [22]. 

b. Classification Time 
To represent the increasing failure rate of the time of the classification 

decision (see assumption 2 above) we choose the gamma distribution with shape 

parameter greater than 1 for the classification time. In addition to having increasing 

hazard rate, the gamma distribution is relatively easy to manipulate, using a mean and 

standard deviation. 

Let D be the decision time; if D is less than the classification window 

length, T, then a classification is done at that time and the probability of correct 

classification is Equation 9 evaluated at time D. If D>T, then no classification is possible. 

We first take the time t to be a continuous random variable, before discretizing later on in 

the model. 

(10) ( ) ( )
1

| ,
A

A

A

A

t

k
D A k

A

ef t t t T
k

θ

θ

−

−= ≤
Γ

 

Where ( )1,A A Ak k k T> =  and ( )A A Tθ θ=  are the shape parameter and scale 

parameter, respectively. We assume that both parameters depend on the classification 

window T.  
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We can use the method of moments to estimate the two parameters of the 

gamma distribution. The mean of the gamma distribution is A Ak θ , and its variance is 

2
A Ak θ . Thus, given estimated mean μ  and standard deviation σ , the corresponding shape 

parameter is 
2

2k μ
σ

= , and the scale parameter is 2σ
μθ = . 

c. Summary of Archetypes Modeling 
Table 1 presents the four parameters governing the classification process. 

 
Parameter Description Affected by 

Aμ  Mean time to make a classification decision when 
classifying a target of type A. 

operator's skill and speed, target type, 
sensor ,classification window. 

Aσ  Standard deviation of time to classify a target of 
type A. 

operator's skill and speed, target type, 
sensor ,classification window. 

Aq∞  Probability of correct classification of a target 
given infinite time to decide. 

operator's skill , sensor performance, 
target type. 

At
∗  Time in which decision quality is no longer 

significantly improved with time (~60% of the 
possible improvement has been achieved). 

operator's skill , sensor performance, 
target type. 

Table 1.   Parameters governing the classification model of an operator. 
 

When the classification window, T, is changed, the parameters controlling 

the decision duration, μ  and σ , are scaled accordingly. In this way the decision time 

distribution is adjusted to the classification window. The shorter the classification 

window the shorter the decision time will be. Shorter classification window degrades the 

classification performance via two effects: 

1. The classification decision will be made sooner, thus it will become less 
likely to be correct (the parameters controlling the accuracy of the 
classification, q∞  and t∗ , are not scaled, as they are a function of the 
operational scenario). 

2. Shorter and shorter classification windows will eventually induce stress, 
which causes a Balanced operator to change his behavior to either Hasty 
or Hesitant. Operators with these speeds of performance have degraded 
performance compared to Balanced operator. 

 
d. Parameters for Operator Archetypes 

Suppose that the classification window T is adjusted to the mission, such 

that refT T= . In this case, an operator of any skill has sufficient time to make an accurate 

classification decision, i.e., Balanced operators exhaust their potential for good 
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classification performance. We characterize the operators by the parameters in Table 2. 

Following is a short analysis to illustrate how these parameters correctly capture the 

operator archetypes characteristics.  

 
Speed of Performance Balanced Hasty Hesitant 

Target 
Parameter VT WT VT WT VT WT 

μ  T/2 T/2 T/8 T/8 T T 
σ  T/4 8T  T/16 128T  T/2 2T  

Operator Skill 
Parameter Expert Novice 

q∞  0.9 0.8 
t∗  Tref/4 Tref/2 

Table 2.   Model Parameters for suggested operators. 
 

Figures 3 and 4 show the resulting probability functions for the operator 

archetypes with the parameters above. T is used as the time unit. The figures show how 

the characteristics of the operator archetypes are captured with the chosen parameters, 

and what effect has different parameter values on the curves. 

The chosen parameters set different classification accuracy functions for 

the two skill levels (Figure 3). Expert operator reaches accuracy close to its asymptotic 

capability faster than the Novice operator, whose asymptotic probability is also lower. 

Both operators get fairly close to the asymptotic probability within one classification 

window time. 

Figure 4 demonstrates the effect of the operator's speed of performance on 

the probability of making a decision within the classification window. Balanced and 

Hasty operators are very likely to make a decision on time, while Hesitant operator will 

make a decision only in about half of the classifications. Hasty operator is very likely to 

make his classification decision during the first third of the classification window. 

Balanced operator is more likely to wait and make his decision later, within the last two 

thirds of the classification window. 

 

 



29 

 
Figure 3.   Probability of correct classification for the operators with different skills as 

a function of classification duration. 
The Expert operator has higher probability asymptote and he reaches the asymptote faster 

than the Novice operator. 
 
 

 
Figure 4.   Cumulative probability distribution of the classification duration within a 

classification window of length 1 for Expert operators with different speeds.  
When classifying target of the same type, Hasty operator is always more likely to decide 

than Balanced operator, and Balanced operator is always more likely to decide than 
Hesitant operator. 
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e. Discrete Characterization of the Operator Archetypes 

In order to use the operator archetypes described above in the discrete time 

model that was developed above, we now introduce a discrete version of the probability 

functions shown above. 

Figures 5 and 6 show the discrete probability functions for the operators in 

the case of classifying valuable target. These probabilities are derived from those shown 

in Figures 3 and 4. 

 

 

Figure 5.   Probability of correct classification, ( )Vq t , for Expert and Novice operators 
in 10 time-intervals model (time intervals are of length T/10). 

The probability is approximated by sampling the continuous function at the middle of the 
time step. This approximation holds if the function is probability of decision is flat 

enough over one step. 
 

The outcomes of the classification process for each operator are displayed 

Table 3. Arguably, the Balanced operators have the best performance: for 78% of 

classifications of valuable targets and 72% of the classifications of worthless targets an 

Expert Balanced operator will decide to shoot or not to shoot, respectively. A Novice 

Balanced operator, for comparison, has only 64% and 60% for the same cases. 

Notice that when classifying a worthless target, Novice Balanced operator 

performs very similar to Novice operator with Hasty nature—the difference is in the 

number of wrong decisions. In both skill levels, Balanced and Hasty operators have more 
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than 50% correct decisions—better than not classifying at all. Hesitant operator has many 

classifications which end without a decision. Thus, the firing policy will be very 

dominant in controlling his mission performance. Balanced operators have a small 

fraction of classifications with no decision. The firing policy will, therefore, have minor 

effect on their performance. The firing policy will have no effect on Hasty operators, as 

they practically make a decision in any classification window. 

 

 Target Valuable Worthless 

skill          decision 

Speed 
F N NA F N NA 

Balanced 0.78 0.18 0.04 0.19 0.72 0.09 

Hasty 0.65 0.35 0.00 0.34 0.66 0.00 Expert 

Hesitant 0.49 0.08 0.43 0.10 0.49 0.41 

Balanced 0.64 0.31 0.04 0.31 0.60 0.09 

Hasty 0.56 0.44 0.00 0.43 0.57 0.00 Novice 

Hesitant 0.40 0.16 0.43 0.19 0.41 0.41 

Table 3.   Classification process outcomes for the suggested operator archetypes. 

 

Table 4 presents the results of operator performance for neutral firing 

policy, which is a policy where a cautious tactic or greedy tactic are adopted with 

probability 0.5 each for each target for which no classification is made. This firing policy 

is a baseline, and may be improved when information regarding the operational scenario 

is available, by changing the probability of adopting each of the firing tactics.  

The Balanced operator almost always make a decision, and it is mostly 

correct, and Hesitant operator makes a decision only in about half of the classifications, 

but when he makes a decision it is very likely to be correct. Nevertheless, when applying 

the firing policy, the decisions of the Balanced operator are not much better than the  
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Hesitant one. The difference between the two is smaller in the Novice skill level case. 

The performance of Hasty operators is the worst in terms of making the right decision. If 

a better firing policy is used, this performance gap may get even worse. 

 

 

Figure 6.   ( )Vd t  for the suggested operators in ten time-intervals model (time intervals 
are of length T/10). 

The discrete probability is calculated by subtraction of the CDF values at the sampled 
time points. 

 

 target Valuable Worthless 

skill            decision 

Speed 
F O F O 

Balanced 0.80 0.20 0.24 0.76 

Hasty 0.65 0.35 0.34 0.66 Expert 

Hesitant 0.70 0.30 0.31 0.69 

Balanced 0.67 0.33 0.36 0.64 

Hasty 0.56 0.44 0.43 0.57 Novice 

Hesitant 0.62 0.38 0.39 0.61 

Table 4.   Classification process outcomes when using neutral firing policy for the 
suggested operator archetypes. 
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The high performance of the Hesitant operators after including the firing 

policy rule doesn't come without a price. Hesitant operator will tend to use the entire 

classification window, and therefore will consume more mission time. Figure 7 displays 

the distribution of the classification process duration for each operator, and Figure 8 

displays the expected values. Hasty operators are expected to use about 20% of the 

classification window. Balanced operators, either Expert or Novice, are expected to use 

about 60% of the classification window. Hesitant operators are expected to use 80% of 

the classification window. 

 

 
Figure 7.   Probability of classification process for the suggested operators in ten time-

intervals model (time intervals are of length T/10).  
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Figure 8.   Expected duration of classification process for the suggested operators; the 

classification window is of length 1. 
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III. MODELING THE SHOOTING PROCESS 

In this chapter, we introduce a model for the shooting process in the engagement. 

First, we describe the operational setting for the process. We introduce two shooters: 

Random Shooter who has no memory, and no BDA or fire control capabilities, and 

Persistent Shooter who can use shoot-look-shoot tactics and may have mission support 

and partial BDA capabilities. We develop a discrete time Markov chain model for the 

shooting process of these two shooters. 

A. DESCRIPTION OF THE PROCESS 

The shooting process begins once the operator decides to shoot at the object in the 

site, following the classification process. The shooter may attack the target with a series 

of shots, after each he may conduct a BDA to verify whether the target is killed or not. If 

the target is not identified as killed, another shot is fired. This tactic is called shoot-look-

shoot tactic and it is applied to the Persistent Shooter (see below). 

When a worthless target is attacked, there might be no apparent kill at all, as the 

target may not contain flammable materials or explosives. Nevertheless, we assume that a 

worthless target, which may be confused with a valuable target, can be affected by a hit 

in a similar way to a valuable target and emit similar signs when killed. 

The nature of the BDA process—in which, after a shot, the shooter looks for 

positive indication, or evidence, that the target is killed—gives way to errors where a 

killed target is considered as live. We assume that live targets are not likely to be 

considered as killed because they are unlikely to emit signs of kill spontaneously. 

B. SHOOTING TACTICS AND TYPES OF SHOOTERS 
We consider two types of shooters: Random Shooter and Persistent Shooter. The 

Random Shooter fires one shot at the target and leaves the site immediately without 

conducting BDA.  The Persistent Shooter conducts shoot-look-shoot tactic using BDA 

persistently, until the target appears to be evidently killed. According to our assumptions, 

a target that is evidently killed is indeed killed (no false positive errors), but a target that 

does not appear to be evidently killed may be actually killed (possible false negative 

errors). The engagement ends either when the target emits signs that indicate it is 
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evidently killed, or when all the munitions allocated to the mission are consumed. An 

improvement to this tactic is obtained by limiting the number of munitions that can be 

fired at a target during its engagement. Such a limit may reduce waste of munitions in the 

case of multi-kills as a result of false BDA [26]. A time-varying  limit which takes into 

consideration the number of munitions left, and the shooter's estimation of the number of 

future attacks in the mission, can improve the efficiency of munitions’ utilization, as 

discussed later on. The engagement ends when either one of the two following events 

occurs: 

1. The target is evidently killed. 

2. All the munitions allocated to the current engagement are consumed. 
 
C. PROBABILITY MODEL FOR THE SHOOTING PROCESS 

In this section, we introduce a general Markov process model for the shooting 

process. This model is applicable for both Random and Persistent shooters. 

1. Probability of Kill and Evident Kill 

Assume that regardless of whether the attacked target is valuable or worthless, the 

shooters' performance remains the same for every engagement. Each time the shooter 

fires at a target of type A (A=VT for a valuable target, or WT for a worthless target), the 

shot kills it with probability Ap . The shots are independent. Let Ab  be the probability that 

a killed target of type A emits signs to that effect after being shot and killed. Then A Ap b  

is the probability that an attacked target of type A is evidently killed. Recall that absent 

spontaneous signs of kill, a target can become evidently killed only following a killing 

shot. Notice also that 0Ab =  in the random shooter case. 

2. Discrete Markov Chain Model 
Let Z  denote the perceived state of the target. A target can be in one of two 

mutually exclusive and exhaustive states of perception throughout the shooting process: 

, if the target is perceived to be alive,
, if the target is evidently killed.

Z
λ
δ
⎧

= ⎨
⎩
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Let A denote the type of the target. The target can be either valuable or worthless. 

VTs become worthless once they are killed. Note that according to our assumption, a VT 

always appears alive. Figure 9 below presents the possible state transitions in the process. 

 

 
Figure 9.   State Transition Diagram for the Shooting Process. 

 

Consider the discrete time process consisting of the states ( ),A Z . This is a 

discrete time Markov chain with the following state transitions: 

1. ( ) ( ), ,VT VTλ λ→  

if the shot fails to kill the target, with probability 1 VTp− . 

2. ( ) ( ), ,VT WTλ λ→  

if the shot kills the target, but it is not evidently killed, with probability ( )1 VT VTb p− . 

3. ( ) ( ), ,VT WTλ δ→  

if the shot evidently kills the target, with probability VT VTp b . 

4. ( ) ( ), ,WT WTλ λ→  

if the shot fails to evidently kill the target, with probability 1 WT WTp b− . 
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5. ( ) ( ), ,WT WTλ δ→  

if the shot evidently kills the target, with probability WT WTp b . 

6. ( ) ( ), ,WT WTδ δ→  

with probability 1. 

Let ,i jP  denote the entry corresponding to the transition from state i to state j in 

the Markov matrix. Then P is a 3 3×  matrix of the form: 

( ) ( ) ( )
( ) ( )
( )
( )

, , ,
, 1 1
, 0 1
, 0 0 1

VT VT VT VT VT

WT WT WT WT

VT WT WT
VT p b p p bP
WT p b p b
WT

λ λ δ
λ
λ
δ

− −=
−  

Let U denote the number of munitions allocated to the current engagement. Each 

shot corresponds to a time step in the Markov chain. Thus, the engagement has at most U 

time steps. 

3. Engagement Results 
Based on the Markov chain presented in the previous section, we can calculate the 

probability distribution of the outcome of a target engagement. Let ( )',U
AP A m  denote the 

probability that a target of type A becomes type A’ after expending on it m munitions , 

m U≤ . 

(11)  

( ) { }
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )

1
,, , , , , , , , ,

1
,

, Pr engagement of a WT ends after  shots

1 1

engagement of a VT ends after  shots
, Pr

and the target is alive

U
WT

m m
m UWT WT WT WT WT WT

m U
WT WT WT WT WT WT m U

U
VT

P WT m m

P P P

p b p b p b

m
P VT m

λ λ λ δ λ λ δ

δ

−

−

= =

= + =

= − + −

⎧ ⎫
= =⎨ ⎬

⎩ ⎭
( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,

1 1
, , , , , , , , , , , ,

, ,, , , , , ,

1

engagement of a VT ends after  shots 
, Pr

and the target is killed

U
VT m U

U
VT

m m
VT VT VT WT VT WT WT WT

U U
m U m UVT VT VT WT

p

m
P WT m

P P P P

P P
λ λ λ δ λ λ λ δ

λ λ λ λ

δ

δ δ

− −

−

⎧ ⎫
= =⎨ ⎬

⎩ ⎭
= + +

+ +
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where ,

1, ,
0, .i j

if i j
otherwise

δ
=⎧

= ⎨
⎩

 

The Random Shooter fires only one shot during an engagement of a target, and 

does not perform any BDA. Therefore, there is no shoot-look-shoot process. Hence, the 

Markov process above is reduced in this shooting process into a very simple case: 

1m U= = . Therefore, for the Random Shooter: 

( ),1 1WTP WT = , ( ),1 1VTP VT p= − , ( ) ( ) ( ) ( ) ( ), , , , , ,,1VT VT WT VT WTP WT P P pλ λ λ δ= + = . 

D. DURATION OF THE SHOOTING PROCESS 

Shooting a munition at a target does not occur instantaneously. First, the shooter 

gets into a shooting position, which depends on the weapon system and the range to the 

target. Second, the munition itself travels to the target, which typically takes 20-30 

seconds for ATGMs [41]. Finally, a BDA process takes place, if such capability is 

available. As more munitions are fired during the engagement, its duration becomes 

longer. Let Pμ  denote the expected duration of the preceding preparations for an attack. 

Such actions may be, for example, a maneuver to allow the release of the weapon. Let 

Fμ   be the expected duration of each shot (including the munition’s travel time and the 

subsequent BDA process). Let R be the duration of the shooting process if the shooter 

decides to attack the target. Assume that the duration of each round of fire is independent 

of the number of munitions consumed in the engagement. Then the expected duration of 

a shooting process, given an attack on a target of type A, is [ ] [ ]| |P FE R A E m Aμ μ≡ + � , 

where m�  is the number of munitions fired during the engagement, given that there is a 

shooting process (i.e., excluding cases where the engagement ends without shooting 

because of "pass over" decision at the end of the classification process). 

For a Random Shooter, each engagement which ends with a shooting process 

involves only one shot. Thus, the expected duration of the shooting process is 

[ ] P FE R μ μ≡ + . 
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For a Persistent Shooter, m�  depends on the number of munitions allocated to the 

engagement. Since this number may be changed from engagement to engagement, the 

duration of each attack may have different distribution. The distribution of m�  given that 

the attacked target is of type A is: 

(12) 
{ } ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

, ,, . , , . , , . ,, . , , . , , . ,

Pr | , ,

C C C

U U
A A

m m U U
m U m UA A A W A AA A A W A A

m m A P VT m P WT m

P P P P P Pλ λ λ δ λ λλ λ λ δ λ λ
δ δ− −

= = + =

= + + +

�
 

And the expected value is: 

(13) [ ] ( ) ( )( )
1

| , ,
U

U U
A A

m
E m A m P VT m P WT m

=

= +∑� . 
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IV. MODELING THE COMPLETE MISSION 

In this chapter, we present the complete model for the hunter-killer mission, 

which consists of a planning phase and a sequence of engagements. Each engagement 

includes a classification process and a shooting process. In Section A, we describe the 

stages of the mission for two types of shooters: the Random shooter and the Persistent 

shooter. We conclude this section with introducing criteria for measuring the mission 

performance. In Section B, we develop discrete-time Markov chain models for the 

multiple-engagement mission, for each type of shooter. For the Persistent shooter we 

introduce heuristics for adjusting dynamically the firing tactics and the munitions 

allocation. In Section C, we use the Markov models to calculate specific measures of 

effectiveness (MOEs). In Section D we present a method for evaluating the expected 

duration of an engagement. 

 

A. DESCRIPTION OF THE COMPLETE MISSION 

1. Introduction: The Mission Structure 
The mission consists of two phases: The planning phase and the execution phase. 

It begins with the planning phase, where the mission planner considers the operational 

scenario and allocates resources for the mission. The input to this planning is all the 

scenario related data, including the number of sites, K, the number of valuable targets, 

KVT, the time, E, and the HK's performance (for more details of these parameters, see 

Section B6 below). In the planning phase, the mission planner chooses four parameters: 

the length of the classification window, T, the number of engagements to be executed in 

the mission, N, the supply of munitions, M, and the shooting policy absent classification 

(see Section B below). By setting these parameters, the planner controls the expected 

duration of the mission, and its expected outcome, as will be discussed in details in 

Section C, and illustrated in Chapter V. Once these parameters are set, the mission enters 

the execution phase. 

The execution phase comprises a series of engagements. Each engagement 

corresponds to one site. Each site contains one target; the target can be either valuable or 



42 

worthless. Assuming that the number of VTs, KVT, and the number of sites, K, are known 

to the HK, the only uncertainty is which sites contain VTs, and which contain WTs. Each 

engagement consists of the following actions and decisions: 

1. Select one of the K sites. 

2. Classify the object (target) in the selected site. 

3. Decide whether to acquire the target or pass it over, possibly based on the 
firing policy. 

4. Allocate the number of munitions for attacking the target (if acquired). 
(There is only one type of munition). 

5. Shoot at the target (if acquired). 

Engagement which contains a shooting process (i.e., the operator decides to 

acquire the target in the site) is considered as attack. 

The shooter utilizes the resources allocated for the mission, engagements (N), and 

munitions (M), and applies the classification window (T) and the firing policy as 

described in the following paragraphs. The shooter does not consider directly the duration 

of the mission, but only the duration of each engagement. His mission is to execute the N 

engagements which are allocated to him by the mission planner. 

The mission ends when there are no more munitions left, or when all of the N 

engagements have been carried out. 

2. The Persistent Shooter 
The Persistent Shooter (PS) engages the sites sequentially, and when he decides to 

acquire a target, he applies a shoot-look-shoot tactic, as described in Chapter III. Once he 

completes engaging a certain target, he never returns to this target’s site. Therefore, the 

Persistent Shooter engages at most N sites, and on each engagement, a site which has not 

been engaged before, is engaged. We assume that the Persistent Shooter is equipped with 

an advanced mission support system, which dynamically adjusts the engagement 

parameters (i.e., firing tactic, and the number of munitions allocation per engagement at a 

site). Figure 10 presents the mission flow for the Persistent shooter. 
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Figure 10.   Hunter-Killer Mission Flow Chart for the Persistent Shooter.  
The parameters on the right hand side of some boxes refer to sections B1 to B5 below 

(Equations 14–19). 
 

We assume that the Persistent Shooter, who continuously estimates the number of 

remaining VTs, will always assume that there is at least one VT remaining. Therefore, 

the mission will never end because the shooter thinks that there are no more VTs. 
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3. The Random Shooter 

Figure 11 presents the mission flow for the Random Shooter. The Random 

Shooter (RS) chooses a site at random from the set of site. Then he classifies the object, 

while using neutral firing policy (chooses at random between greedy and cautious firing 

tactics) in case no decision is made during the classification window. If the operator 

decides to acquire the target, he shoots one munition at it. Then, he moves to the next 

engagement, if he has at least one munition, and at least one engagement left. 

 

 
Figure 11.   Hunter-Killer Mission Flow Chart for the Random Shooter. 

The parameters on the right hand side of some boxes refer to sections B1 and B2 below 
(Equation 15). 

 
4. Criteria for Measures of Effectiveness 
The mission can be evaluated by several measures of effectiveness (MOEs), 

which capture different aspects of an effective mission. In general, there are three criteria 

according which the mission is measured: 
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1. Achieving mission objectives: How many of the VTs are killed? 

2. Utilizing weapon effectively and efficiently: How many munitions are 
fired in total? 

3. Using time efficiently: How many of the engagements are performed? 
How long does the mission last? 

The specific MOEs corresponding to these criteria for the models will be defined 

in Section C of this chapter, using the models which we describe below. 

 

B. INTEGRATED PROBABILITY MODEL FOR THE COMPLETE 
MISSION 
In this section we introduce a probability model that describes the complete 

mission for the two shooters defined above. We start with definitions and heuristics for 

calculating the mission parameters, which are the probability of choosing a target of 

specific type, the firing policy and the munitions allocation for the next engagement. In 

each paragraph we refer to each of the three shooters. Then we present a discrete-time 

Markov chain model for each one of the three shooters. 

1. Notations 
In the following paragraphs we use the notation below: 

K Number of sites in the mission. 

KVT Number of sites containing valuable targets at the beginning of the mission. 

M Number of munitions allocated for the mission. 

N Number of engagements allocated for the mission. 

T Classification Window 

n Current number of engagements completed so far in the mission. 

( )k n  Number of live VTs at the end of the nth engagement. 

( )k n�  Number of VTs which have been engaged during the first n engagements. 

( )k̂ n  Estimate of k(n) at the end of the nth engagement. This parameter applies only to 
the Advanced Persistent Shooter. 

( )e n  Current number of attacks carried out by the end of the nth engagement.  
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2. Selecting a Site 

Let ( )K
Ac n  be the probability of choosing a site which contains a target of type A, 

A=VT, or WT, after n engagements, given that there are K sites. 

a. Persistent Shooter 
The Persistent Shooter engages each target at most once. At each 

engagement, a fresh site is chosen from the list of unengaged sites. 

(14) ( )
( )

( )

, ,

1 , .

V

V

K k n
K nK

A K k n
K n

A V
c n

A W

−
−

−
−

⎧ =⎪= ⎨
− =⎪⎩

�

�  

b. Random Shooter 

At each engagement, the Random Shooter chooses a site at random from 

the set of K sites. The initial number of valuable targets is ( )0 Vk K= . 

(15) ( )
( )

( )

, ,

1 , .

k n
KK

A k n
K

A V
c n

A W

⎧ =⎪= ⎨
− =⎪⎩

 

3. Estimating the Current Number of Valuable Targets by the PS 
The Random Shooter does not need to estimate the current number of valuable 

targets after an engagement, as its mission parameters—firing policy and number of 

allocated munitions—are always fixed and are not updated after an engagement. 

Recall that in Section A we assumed that the mission ends only when either the 

munitions or the engagements are fully exhausted (m=0 or n=N). It does not end even if 

the operator estimates that there are no more VTs in the area of operations (because he 

may be wrong). Hence, practically, the operator always behaves as if there is at least one 

more VT. Therefore the estimator for the number of remaining VTs always satisfies 

( )ˆ 1k n ≥ . Notice that Persistent Shooters will never engage a target more than once, so 

the outcomes of the previous attacks do not influence his future decisions. This is the 

essence of the persistent tactics. 

At the beginning of each engagement, the Persistent Shooter evaluates the 

operational situation based on the information that he has so far. An important factor that 

affects the behavior of the shooter and his decisions is the perceived number of (live) 
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valuable targets after the nth engagement, ( )k̂ n . The number of remaining VTs 

influences the firing policy and the munitions allocated for the subsequent engagements. 

Assume that the number of VTs at the beginning of the mission, KVT, is accurately 

known to the operator. Also assume that the operator knows the conditional probabilities 

of acquiring or passing over a target at the end of the classification, 

( ) ( )| , |Y YP F A P O A  (see Chapter II). At the end of the nth engagement, let ( )e n  

denote the number of targets he attacked so far. Of those targets/sites he has considered, 

the number of targets he has not attacked is ( )n e n− . In order to evaluate how many VTs 

have been engaged by the end of the nth engagement, the operator uses Bayes’ rule to 

evaluate the probability that an attacked target is a VT, given firing tactic Y, 

{ } ( ) { }
( ) { } ( ) { }

( )
( ) ( )( )

| Pr |
Pr |

| Pr | Pr | | 1

VT

VT VT

K
Y Y K

K K
Y Y Y YK K

P F VT VT P F VT
VT F

P F VT VT P F WT WT P F VT P F WT
= =

+ + −

 

where F indicates the decision to fire at the end of the classification process. Similarly, 

the probability that a target that was not attacked is a VT is  

( )
( ) ( )( )

|
| | 1

VT

VT VT

K
Y K

K K
Y YK K

P O VT
P O VT P O WT+ −

 

These probabilities depend on the firing tactics, which may be updated during the 

mission, according to the firing policy, when moving from one engagement to another. 

The analysis in Chapter II shows that the firing tactic has no influence on the 

performance of the Hasty operator and has relatively minor influence on the performance 

of the Balanced operator. Since the firing policy has low influence on all, but Hesitant 

operators, we suggest an approximation consisting on a unique firing policy, the neutral 

policy—a firing policy in which the shooter chooses randomly between greedy firing 

tactic and cautious firing tactic at each engagement—for estimating { }Pr |VT F . This 

approximation avoids the need to keep track of the results of previous engagements 

(which significantly expands the state space), with a small price of inaccuracy. Evidence 

for the reasonableness of this analysis is shown in the performance measures calculated 
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for different scenarios in Chapter V; ther performance measures show relatively low 

dependency of the mission performance on the firing policy, especially when the operator 

is not Hesitant. 

Our proposed estimator for the number of remaining VTs is based on the expected 

number of remaining VTs. 

(16) ( )
( ) ( ) ( )

( ) ( )( ) ( ) ( )( )( )

( )( ) ( ) ( )
( ) ( )( ) ( ) ( )( )( )

| |

| | | | 1

| |

| | | | 1

ˆ max 1,

C GVT
K KVT VT

C G C GK K

C GVT
K KVT VT

C G C GK K

P F VT P F VTK
VT K P F Vt P F VT P F WT P F WT

P O VT P O VTK
K P O VT P O VT P O WT P O WT

K e n
k n

n e n

+

+ + + −

+

+ + + −

⎧ ⎫⎡ ⎤− −
⎪ ⎪⎢ ⎥

= ⎨ ⎬⎢ ⎥
− −⎪ ⎪⎢ ⎥
⎢ ⎥⎩ ⎭

 

The estimated number of remaining VTs is the initial number of VTs, KVT, from 

which we subtract the estimated number of VTs which have been engaged and attacked, 

and the estimated number of VTs which have been engaged and passed over. Based on 

our assumption above, this estimate cannot be smaller than 1. 

4. Selecting a Firing Tactic  

a. Persistent Shooter 

It is reasonable to assume that the firing tactics of the PS may be 

dynamically chosen throughout the mission, based on the perceived performance so far, 

the known mission parameters, and the firing policy, which is a policy dictated by the 

planner. The way to choose a firing tactic on each engagement is determined by setting a 

firing decision rule, as will be described below. Intuitively, a greedy firing tactic may be 

appropriate when the battlefield is saturated with valuable targets. A cautious firing tactic 

is more appropriate when there are many worthless targets. How many is considered 

enough for saturation of VTs or WTs is relative to the tendency to shoot as it being 

captured by the firing policy. When there is abundance of munitions, or when there is 

enough time to shoot and classify correctly, the planner may choose firing policy with 

high tendency to shoot, which will cause the operator of the HK to use more the greedy 

firing tactic. 

The firing decision rule for choosing the fire tactic after the nth 

engagement can therefore depend on the current perceived density of valuable targets 

( ( ) ( )k̂ n K n− ), and on the firing policy. Let the firing decision rule, ( )YL n  be the 
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probability of choosing a firing tactic of type Y (Y=G or C) at the end of the nth 

engagement. In the case where the classification window expires without a decision, the 

HK attacks the target according to an estimate of the probability that the object is a 

valuable target, which we denote as { }P̂ |VT D T>  (see Equation 17 below). The firing 

policy is chosen by the mission planner to maximize the expected number of killed VTs 

within the operational constraints of mission resources availability. The γ -firing policy, 

introduces a firing threshold, denoted by [ ]0,1γ ∈ , to control the value of the firing 

decision rule. The highest tendency to shoot is represented by 1γ = . The following 

heuristic is used to set the firing decision rules: choose greedy firing tactic if the 

probability that the engaged target is a VT is greater than 1 γ− . Thus, a firing threshold 

of 1 ( 1γ = ) means constant greedy firing tactic; a firing threshold of 0 ( 0γ = ) means 

constant cautious firing tactic. As the firing threshold approaches 1, the shooter is more 

likely to choose a greedy firing tactic, and shoot the target in the case of no classification 

decision. When a firing tactic of type Y is used constantly (γ  is at one of its extremes), 

we say that a firing policy of type Y is applied. 

(17) 
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(See Equations 1-7 in Chapter II) 

(18) 
( ) { }

( ) ( )

ˆ1, P | 1 ,
0, .

1

G

C G

VT D TL n
otherwise

L n L n

γ⎧ > ≥ −⎪= ⎨
⎪⎩

= −

 

When using this heuristic, ( )YL n  is a trivial probability function, which 

gets values of 0 or 1 solely. It means that the operator does not flip a coin to choose a 

firing tactic. Yet, the firing tactic is chosen according to the estimated probability that the 

engaged target is a VT. 
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In Chapter V we will illustrate how the mission planner can use the γ -

firing policy to adjust the mission performance according to considerations of mission 

performance. 

b. Random Shooter 

The Random Shooter is completely memory-less. Hence, the firing policy 

is random and fixed to be the neutral firing policy—with probability 0.5 he will attack 

when no decision is made before the classification window expires, that is, 

0.5G CL L= = . 

5. Allocating Munitions for Attack by PS 
When the classification process ends with a decision to attack the target, the 

Persistent Shooter determines the number of munitions that will be allocated to that 

engagement, denoted by U. Then, the HK performs the shooting accordingly. 

The number of munitions allocated to the engagement, U, is dynamically adjusted 

to maximize the expected number of killed VTs. Aviv and Kress [26] explored several 

shoot-look-shoot tactics with fire allocation, and demonstrated the effect of limiting the 

number of munitions for each engagement on the overall outcome of the mission. 

The number of munitions allocated to an engagement, U, depends on the state of 

the battle: the number of engagements left in the mission, the available amount of 

munitions, the estimated number of remaining VTs, and the initial conditions (number of 

targets and number of valuable targets at the beginning of the mission), which are known 

to the operator.  

Following [26], we consider the following heuristic for allocating munitions for 

the Persistent Shooter. For each engagement, allocate the munitions equally among all 

estimated expected future attacks. This heuristic has been shown to be reasonably close to 

the optimal dynamic program solution in [26], when the exact number of future attacks is 

known. The operator estimates that there are ( )k̂ n  valuable targets left, and knows that 

there are n N n≡ −  more sites to classify. An estimate for the probability that a site will 

contain a VT is ( )k̂ n
K n− . Using the fixed neutral firing policy assumption (see Section B3) 



51 

for calculating the probability of opening fire on VT and WT, the estimated number of 

future engagements is 

( ) ( ) ( ) ( )( ) ( ) ( )ˆ ˆ
0.5 | | 0.5 1 | |k n k n

C G C GK n K nn P F VT P F VT n P F WT P F WT− −⎡ ⎤ ⎡ ⎤+ + − +⎣ ⎦ ⎣ ⎦  

Thus, the number of munitions the Persistent Shooter allocates for the 

engagement after the nth engagement is: 

(19) ( ) ( ) ( ) ( ) ( ) ( ) ( )
ˆ ˆ

2

| | 1 | |
min ,

k n k n
C G C GK n K n

m

n P F VT P F VT n P F WT P F WT
U n m

− −
⎛ ⎞⎡ + ⎤+ − ⎡ + ⎤⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

⎧ ⎫⎡ ⎤⎪ ⎪= ⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎢ ⎥⎩ ⎭

 

6. Summary of the Mission Parameters 
The operational settings determine the mission data, which includes: 

1. The number of sites, K. 

2. The number of VTs, KVT. 

3. The time, E, available for the mission. 

4. The expected time to perform different tasks in the engagements—
expected time between engagements, Cμ , expected duration of preceding 
preparations for an attack, Pμ , expected duration of each shot, Fμ . 

5. The reference time for the classification window, Tref. We use this 
parameter to determine the time-dependence of the classifications 
accuracy, as described in Chapter II.  

6. The operator's performance parameters (See Chapter II). 

7. The weapon system performance parameters—the single shot kill 
probability, p, and the probability that a target emits signs of being killed 
following a kill, b. 

At the planning phase, the mission planner fixes four parameters: 

1. The length of the classification window, T. 

2. The number of engagements to be executed in the mission, N. 

3. The supply of munitions, M. 

4. The firing threshold, γ  for the γ -firing policy (for PS). 

The operator of the Hunter-Killer then performs the mission in accordance with 

the assigned shooting tactic and mission/planner parameters. The PS determines the 

number of munitions allocated for each engagement, U, and the probability of using 

greedy firing tactic. The RS controls no mission parameter. 
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7. Discrete Time Markov Chain Model for the Complete Mission of the 
Persistent Shooter 

Consider the states given by ( ){ }, , ,k m e k�  where k is the total number of 

remaining VTs (engaged before and not yet engaged), m is the number of remaining 

munitions for the mission, e is the number of engagements which ended with shooting the 

target, and k�  is the number of VTs engaged so far. 

Define a discrete-time Markov chain { }, 0,1, 2,nX n = … , with state space 

consisting of the states ( ){ }, , ,k m e k� , where each step is an engagement. This Markov 

chain fully describes the battlefield at the end of each engagement and the information 

the operator needs for future engagements, with ( )0 , ,0,0VX K M= . The process ends  

after N engagements or when an absorbing state is reached. The absorbing states are 

( ){ },0, ,k e k� —when all the munitions are expended. Figure 12 presents the possible 

transitions in the Markov chain. 
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Figure 12.   State transitions for the Persistent Shooter Mission. 

 

The state transitions to the ( )1 stn +  engagement are:  

1. ( ) ( ), , , , , ,k m e k k m e k→� �  

if a WT is engaged, and the classification process ends with a no-fire decision with 

probability ( ) ( ) ( ) ( ) ( )| |K
W G G C Cc n L n P O WT L n P O WT⎡ ⎤+⎣ ⎦ , where ( )K

Wc n , ( )GL n , 

( )CL n  are defined in Sections B1-B4, and ( )|GP O WT , ( )|CP O WT  are defined in 

Chapter II. 

2. ( ) ( ), , , , , , 1k m e k k m e k→ +� �  

if a VT is engaged with a no-fire decision, with probability 

( ) ( ) ( ) ( ) ( )| |K
V G G C Cc n L n P O VT L n P O VT⎡ ⎤+⎣ ⎦ . 
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3. ( ) ( ) ( ), , , , , 1, 1k m e k k m m e k m U n→ − + ≤ ≤� �� �  

if a WT is engaged, the classification process ends with a fire decision and the shooting 

process ends after consuming m�  munitions with probability 

( ) ( ) ( ) ( ) ( ) ( ) ( )| | ,U nK
W G G C C WTc n L n P F WT L n P F WT P WT m⎡ ⎤+⎣ ⎦ �  where U is defined in 

Section B5, and ( ),U
AP B m�  is the probability that a target of type A is attacked with U 

munitions allocated for the engagement, and the engagement ends when  m�  munitions 

are fired and the target is of type B, as defined in Chapter III. 

4. ( ) ( ) ( ), , , , , 1, 1 1k m e k k m m e k m U n→ − + + ≤ ≤� �� �  

if a VT is engaged, the classification process ends with a fire decision and the shooting 

process ends after consuming m�  munitions, but the target is still alive with probability 

( ) ( ) ( ) ( ) ( ) ( ) ( )| | ,U nK
V G G C C VTc n L n P F VT L n P F VT P VT m⎡ ⎤+⎣ ⎦ � . 

5. ( ) ( ) ( ), , , 1, , 1, 1 1 , 1k m e k k m m e k m U n k→ − − + + ≤ ≤ ≥� �� �  

if a VT is engaged, the classification process ends with a fire decision and the shooting 

process ends successfully after consuming m�  munitions with probability  

( ) ( ) ( ) ( ) ( ) ( ) ( )| | ,U nK
V G G C C VTc n L n P F VT L n P F VT P WT m⎡ ⎤+⎣ ⎦ � . 

6. ( ) ( ),0, , ,0, ,k e k k e k→� �  

with probability 1 

Notice that the transition probabilities may depend on n, so this Markov chain 

does not have stationary transition probabilities. 

8. Discrete Time Markov Chain Model for the Complete Mission of the 
Random Shooter 

In this section we present a Markov chain for the Random Shooter. RS has no 

memory; hence, the behavior of the operator is completely independent of the mission 

history. Thus, the states of the system can be reduced to ( ),k m  where k is the number of 

remaining VTs and m is the number of remaining munitions for the mission. Also, there 
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is no dynamic adjustment of policies, so the state transitions are stationary. Figure 13 

presents the possible transitions in the Markov chain describing a mission of the Random 

Shooter. 

 

 
Figure 13.   State transitions for the Random Shooter. 

 

The following state transitions are possible: 

1. ( ) ( ), , 0k m k m m→ >  

if the classification process ends with no no-fire decision, with probability 

( )
{ }

( ) ( )
{ }

( )
, ,

| |K K
V Y Y W Y Y

Y C G Y C G
c n L P O VT c n L P O WT

∈ ∈

+∑ ∑ . 

2. ( ) ( ), , 1 0k m k m m→ − >  

if a VT is classified correctly but is not killed or a WT is classified incorrectly, and 

consequently attacked, with probability 

( )
{ }

( )( ) ( )
{ }

( )
, ,

| 1 |K K
V Y Y VT W Y Y

Y C G Y C G
c n L P F VT p c n L P F WT

∈ ∈

− +∑ ∑ . 

3. ( ) ( ), 1, 1 , 0k m k m k m→ − − >  

if a VT is classified correctly and killed, with probability ( )
{ }

( )
,

|K
V Y Y VT

Y C G
c n L P F VT p

∈
∑ . 

4. ( ) ( ),0 ,0k k→  

with probability 1. 
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C. DEFINING MEASURES OF EFFECTIVENESS 

In this section, we define a set of measures of effectiveness (MOEs), which reflect 

different aspects of mission success. A successful mission is one that kills the valuable 

targets, using the given resources of time and munitions. The values of the MOEs may be 

used to evaluate the outcomes of a planned mission and to adjust its parameters to 

achieve better results. 

We consider four MOEs: 
1. The expected fraction of VTs killed (KVTP). 

2. The expected fraction of munitions expended (MEP). 

3. The expected fraction of engagements performed (EUP). 

4. The expected mission time (EMT). 

Let  

( )
( )

, , for Random Shooter,

, , , , for Persistent Shooter.
i i

i
i i i i

k m
x

k m e k

⎧⎪= ⎨
⎪⎩

�  

be the state of the system at the end of the ith engagement. The random variables { } 0

N
i i

x
=

 

form a Markov chain with transition matrices { } 1

N
i i

P
=

 whose entries are the state transition 

probabilities calculated above. The initial state is 0x .  

Let S  denote the number of states in the Markov Chain. iP  is an S S×  matrix. 

Let 

( )
( )

, , for Random Shooter,

, , , , for Persistent Shooter.

j j

j

j j j j

k m
v

k m e k

⎧⎪= ⎨
⎪⎩

�
 

be the jth state in the state space of the mission, { }
0

S

j j
v

=
, such that 0 0x v=  with probability 

1. Then the probability that the system is in state u  at the end of the mission, after N  

engagements, given that the system starts at state 0v  is { } ( )
0 ,Pr N v ux u P N= = , the 0 ,v u   
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entry in the transition matrix ( )P N , which gives the transition probabilities after N  

engagements. For the Persistent Shooter ( )
1

N

i
i

P N P
=

=∏ . For the Random Shooter 

( ) NP N P= . 

1. Expected Fraction of VTs Killed 
One of the most natural and useful MOEs is the ratio between the number of 

killed valuable targets and the total number of valuable targets in the area of interest. The 

expected number of killed VTs at the end of the mission, given that the initial state is 0v  

is ( ) ( ) ( )0 ,
1

o i

S

VT V i v v
i

v K k P Nη
=

= −∑ , where S is the number of states, ki is the number of 

VTs remaining in the ith state and vi is the ith state. The expected fraction of VTs killed 

(KVTP) is then VT

V

N
KKVTP = . 

For the Persistent Shooter ( ) ( )0
1 1 ,o i

NS

VT V i j
i j v v

v K k Pη
= =

⎡ ⎤
= − ⎢ ⎥

⎣ ⎦
∑ ∏  and ( )0 , ,0,0Vv K M= . 

For Random Shooter ( ) ( )0 ,
1

o i

S
N

VT V i v v
i

v K k Pη
=

= −∑  and ( )0 ,Vv K M= . 

2. Expected Fraction of Munitions Expended 

This MOE is important to measure how restrictive is the allocation of munitions 

for the mission. If only a small portion of the munitions allocated for the mission is 

expected to be expended, maybe the unnecessary munitions can be allocated for another 

mission. If a large portion of the munitions is expected to be fired, maybe allocating more 

munitions for this mission can significantly improve the performance. 

The expected number of munitions fired during the mission given that the system 

starts at state 0v  is ( ) ( ) ( )0 ,
1

o i

S

M i v v
i

v M m P Nη
=

= −∑ . The expected fraction of Munitions 

Expended is M
MMEP η≡ . 

For Persistent Shooter ( ) ( )0
1 1 ,o i

NS

M i j
i j v v

v M m Pη
= =

⎡ ⎤
= − ⎢ ⎥

⎣ ⎦
∑ ∏  and ( )0 , ,0,0Vv K M= . 
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For Random Shooter ( ) ( )0 ,
1

o i

S
N

M i v v
i

v M m Pη
=

= −∑  and ( )0 ,Vv K M= . 

3. Expected Fraction of Engagements Performed 
Although N engagements are allocated for the mission, the mission may end 

earlier if all munitions are expended. The expected number of engagements in the 

mission may be less than N engagements if there aren't enough munitions. It is important 

to balance the munitions allocation, M, and engagements allocations, N, with the planned 

duration. The expected number of engagements, given the mission starts at state 0v , is: 

( ) ( )
{ }{ }

( )
{ }

0 0

1

0 , ,,
1 : 0 : 0 : 0

1 1
j jj i

i j j

N

E v v j v vv v
n i i m j j m j j m

v n P n P N P Nη
−

= ∈ = ∉ = ∉ =

⎛ ⎞
⎜ ⎟⎡ ⎤= − + −⎣ ⎦⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑  

The expected fraction of Engagements Performed is: E
NEPP η≡  

For the Persistent Shooter: 

( ) [ ]
{ }{ } { }

1 11

0 ,
1 : 0 1 1: 0 : 0, ,

j i
i j jo j o j

n NN

E l n lv v
n i i m l lj j m j j mv v v v

v n P P N Pη
− −−

= ∈ = = =∉ = ∉ =

⎛ ⎞⎡ ⎤ ⎡ ⎤⎜ ⎟= +⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠
∑ ∑ ∑ ∑∏ ∏ . 

For the Random Shooter at most one shot is fired in each engagement, thus if 

M N≥  the mission will always end due to engagements restriction. Otherwise, 

( )
{ }{ } { }

1
1 1

0 , , ,
1 : 0 : 0 : 0

o j j i o j

i j j

N
n N

E v v v v v v
n i i m j j m j j m

v n P P N Pη
−

− −

= ∈ = ∉ = ∉ =

⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑  and ( )0 ,Vv K M= . 

4. Expected Mission Time 

In order to make sure that the mission is expected to end on time, the planner 

considers the expected mission time (EMT). 

In order to calculate EMT the expected number of attacks should be knows. For 

the PS, the expected number of attacks is given by ( )0
1 1 ,o i

NS

A i j
i j v v

v e Pη
= =

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑ ∏ . For RS, the 

expected number of attacks is equal to the expected number of munitions expended, as on 

each attack exactly one munition is fired, A Mη η= . The expected mission time is then: 
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(20) ( )C D E P A F MEMT μ μ η μ η μ η= + + +  

where Cμ  is the expected time between engagements, Dμ  is the expected time for the 

classification process (Equation 8), Pμ  is the expected time of a preparation for an attack, 

and Fμ   the expected duration of each shot. As the expected mission time approaches the 

time available for the mission, E, it is more likely that the mission will not be 

accomplished on time. 
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V. PERFORMANCE ANALYSIS 

A. INTRODUCTION 
In this chapter, we study two operational scenarios to demonstrate how the model 

developed in the previous chapters can be used to analyze real-world Hunter-Killer 

problems. In each scenario, the operational setting determines the mission data, as 

described in Section A of Chapter IV. The mission planner creates a mission plan by 

setting the parameters he controls, which are: the number of munitions (M), the 

classification window (T), the number of engagements (N), and the firing threshold (γ ) 

for the firing policy. The parameters controlled by the shooter depend on its type. On 

each engagement, the Persistent Shooter controls the number of munitions allocated for 

the engagement (U), and the firing decision rule (LG, LC). The RS does not control any 

parameters. 

In the first scenario, an unmanned combat air vehicle (UCAV) searches the area 

of operations for a rocket launcher in order to kill it before the launcher retreats to a 

hiding site. In the second scenario, a UCAV is sent out to attack a surface to air missile 

(SAM) battery, to clear the way for bombers in a scheduled deep strike operation over the 

area. Each scenario presents different conditions regarding the mission resources—time 

and munitions—and the density of valuable targets (KVT/K). In each scenario, we start 

with a nominal set of parameters describing the mission data, and then vary them in a 

sensitivity analysis to evaluate how they affect the UCAV’s performance. In addition, we 

examine how the skill and speed of performance of an operator, and his shooting tactics, 

influence his performance. The measures of effectiveness are: the expected fraction of 

VTs killed, the expected fraction of munitions expended, the expected fraction of 

engagements performed, and the expected duration of the mission. 

 

B. SCENARIO A: SHOOT-AND-HIDE ROCKET LAUNCHER 

1. Operational Setting 

Consider a scenario in which a launch of a medium-range rocket is detected. The 

launcher is mounted on a pickup truck, which leaves the launch site immediately after the 
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launch, and retreats to a hiding place. An intelligence analysis indicates three potential 

hiding sites. The analysis also indicates five possible access routes from the launch area 

to the hiding sites. It is estimated that 3 minutes after the launch, the truck will reach a 

hiding site. Once reaching a hiding site, the launcher cannot be detected or attacked from 

the air. A UCAV carrying four munitions is loitering over the launch area. The launch 

area is an agricultural area in the suburbs of a town. There are a few other vehicles and 

agricultural equipment used by farmers in the area, which may be confused with the 

launcher. See Figure 14 for an illustration of the scenario. 

 

 
Figure 14.   Schematic illustration of scenario A theater. 

Each possible route forms a site for classification. The launcher is in one of the sites. 
 

In this scenario, each one of the five access routes is a suspected target site, and 

might contain the single valuable target—the truck carrying the rocket launcher. During 

the classification process the operator sweeps through a route, and decides if the object he 

observes is the launcher or not. Assume that on each route the operator attacks (if he 

decides to do so) only one object—the one he considers as the launcher (VT). The total 

expected time available for the mission is three minutes. Assume that this time is too 

short to coordinate a replacement UCAV to take over the mission, so there are four 

munitions available to kill the launcher. Table 5 presents the nominal values of the 

parameters for this scenario. It is assumed the VT is available during the entire mission 

duration even if it exceeds 3 minutes (yet, the mission planner should make sure that the 

expected mission time does not exceed 3 minutes). 
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E K KVT Cμ TRef q∞ Pμ Fμ p b 

3 5 1 0 1 0.9 0.3 0.3 0.8 0.8 

Table 5.   Nominal Parameters for scenario A. 
Cμ —expected time between engagements (see Section C in Chapter IV), Pμ —expected 
duration of preceding preparations for an attack (see Section D in Chapter III), Fμ —

expected duration of each shot (see Section D in Chapter III), Tref—reference 
classification window for normal operational conditions (see Section C in Chapter II), 
q∞ —the limiting probability of correct classification for Expert operator (see Section C 
in Chapter II), p—the single shot kill probability, b—the probability that a target emits 

signs of being killed following a kill. 
 

In this scenario there is a low density of valuable targets (KVT/K)—only one of the 

five sites, 20%, contains a valuable target. The time available for the mission (3 min) is 

very short.  

2. Baseline Mission Plan 
We start with forming a baseline mission plan, assuming that the operator is a 

Balanced Expert and he is using the Persistent Shooter tactic. First, the mission planner 

sets the number of munitions. The operational constraint to use only one UCAV does not 

allow the mission planner to allocate more than M=4 munitions. This number seems to be 

sufficient, as there is only one VT, only 5 sites, and probably not enough time to shoot all 

the available munitions, as each shot takes 18 seconds ( Fμ ) and shooting all of the 

munitions takes, on average, 72 seconds, leaving less than two minutes for classifications 

and preceding preparations for attacks (which takes each 18 seconds, on average). As a 

start, the mission planner sets the classification window to the reference time, 

T=Tref=1min, to avoid stress. Then, the number of engagements, N, is adjusted by trial 

and error process, such that the expected mission time (EMT) does not exceed the time 

available for the mission, E=3min. After fixing M and T, The mission planner sets 

different values for N and γ , and calculates the consequent EMT, until the KVTP is 

maximized subject to the time constraint EMT E≤ . 

When the classification window is set to the reference time, Tref (1min), then four 

engagements (N = 4) can be carried out such that EMT E≤ ) if a firing policy with low 

firing threshold γ  is used, and three engagements (N = 3) can be carried out on time for a 
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firing policy with high firing threshold (γ  approaches to 1). With three engagements, 

there is a chance of 40% that the target will not be engaged at all, as there are 5 sites to 

engaged, and the probability that the launcher will be at one of the three which are 

engaged is 0.6. Table 6 presents MOE values for the mission plan with Balanced Expert 

PS, and the nominal mission parameters as presented in Table 5, when the classification 

window is set to one minute, and there are three to four engagements. Each line in Table 

6 corresponds to a different firing policy and different number of engagements, as 

determined by setting the firing threshold, γ  and the number of engagement N.  

 

MOE
γ , N KVTP EPP MEP EMT

0, 3 0.46 0.98 0.34 2.18
0, 4 0.61 0.97 0.44 2.89
0.75, 3 0.46 0.98 0.34 2.18
0.75, 4 0.62 0.97 0.47 2.95
1, 3 0.48 0.97 0.43 2.35

Table 6.   MOEs for Scenario A , T=TRef=1min. 
γ —firing threshold, KVTP—fraction of VTs killed, EPP—fraction of engagements 
performed, MEP—fraction of munitions expended, EMT—expected mission time 

(minutes). 
The expected mission time for 1γ =  and N=4 exceeds the available 3 minutes. 

 

When four engagements are allocated, the expected mission time (EMT) gets very 

close to the time available for the mission, 3 minutes, compared with mission with 3 

engagements. This fact causes a higher risk that when the mission lasts longer than 

expected, the launcher may escape. 

The probability of killing the launcher equals to the expected fraction of VTs that 

are killed, KVTP. When three engagements are allocated, it is quite low—less than 0.5 

(KVTP)—but recall that the maximum probability that can be achieved with three 

engagements is 0.6, since there are five sites. In allocating four engagements, the planner 

takes a higher risk that the mission will take longer than the available time, E, but the 

probability of success becomes higher than 0.6. For both cases (three or four 

engagements), it is clear that the choice of firing policy does not make much difference 

with respect to KVTP—the results are similar for high and low values of γ . Notice for 
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the cases studied, that the high firing threshold (higher γ ) increases the expected mission 

time (EMT) without a significant increase in the performance (KVTP); however, a longer 

expected mission time may result in a higher probability the target will successfully hide. 

Since the expected mission time for a cautious firing policy will tend to be smaller, the 

probability the VT will successfully hide will be smaller. There is no shortage in 

ammunition—less than two munitions are expected to be expended (MEP<0.5), and all 

three engagements are likely to be executed in the mission (high EPP). Assuming that the 

planner is willing to take the higher risk of not completing the mission on time, the 

nominal mission plan is to allocate four munitions and four engagements, set the 

classification window at one minute, and use cautious firing policy. 

Without any classification process, assuming that the operator shoots at one object 

at each engaged site, there is a probability of 0.8 to attack the launcher (there are 4 

munitions, thus 4 possible attacks on five sites). The weapon's single shot kill probability 

is 0.8. Thus there is a probability of 0.64 to kill the launcher without any classification 

effort. This result is higher than the KVTP in Table 6, a fact, which encourages seeking a 

better mission plan. The expected mission time of such a plan is only 2.67 minutes. 

Nevertheless, engagement with classifications may reduce the collateral damage, as fewer 

of the munitions are expected to be fired. There are operational situations when reducing 

the collateral damage is important. 

3. Achieving Higher KVTP with More Engagements 
In order to increase the probability of mission success, the number of 

engagements N should be further increased; with four engagements, the KVTP is bounded 

by the probability of engaging the launcher, 0.8. The increase in N can be achieved by 

shortening the classification window, which would decrease the duration of each 

engagement. In this case, the benefit of additional engagements may be degraded by 

reduced classification accuracy due to the effect of time stress on the operator. In order to 

decide on how much the classification window should be shortened, the planner should 

decide on a time margin for completing the mission. This time-margin is the difference 

between the time available for the mission, E, and the expected mission time, EMT, that 

is, E EMT− . It reflects the risk of not completing the mission on time. Assuming no 

margin at all, i.e., EMT = E, the planner tries to set the classification window and firing 
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policy such that the fraction of killed VTs, KVTP, is maximized and the expected time of 

the mission is less than or equal to 3 minutes. The results of such a plan as a function of 

the number of engagements for Expert operator are shown in Figure 15. In all cases M=4, 

the classification window, T, and the firing threshold are set to maximize the KVTP for a 

given N. Table 7 presents the MOE and the values of the mission parameters (T, N, and 

γ ) for the points of maximum KVTP. The smallest number of engagement is obtained 

when the classification window is unbounded (T is unlimited). The cases where the 

classification window is unbounded are modeled as if a classification window of twice 

the reference time, Tref, is perceived for the scaling of the probability function for the 

decision duration, D. The classification process is not truncated by a decision deadline, so 

the classification ends when a classification decision is made. Hasty operator can 

complete 5 engagements for unbounded classification window; thus this is the minimum 

number of engagements appearing for him in Figure 15. 

 

  
Figure 15.   Expected Fraction of  VTs Killed vs. the Number of Engagements in 

Scenario A. 
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The maximum probability of killing the VT (KVTP) of PS, with any type of 

operator (see Table 7), is higher than this probability when there are four engagements 

without classification, 0.64 (see Table 6). Thus, increasing the number of engagements 

does seem to be effective with respect to the KVTP MOE. 

 
Shooter Speed T N γ KVTP EPP MEP EMT 

Balanced 0.72 5 0 0.72 0.95 0.59 3.00 
Hasty NA 5 1 0.69 0.93 0.62 2.76 PS 
Hesitant 0.3 5 1 0.67 0.83 0.89 3.00 
Balanced 0.23 10 NA 0.60 0.43 0.88 2.99 
Hasty 0.78 10 NA 0.60 0.45 0.87 3.00 RS 
Hesitant 0.14 10 NA 0.55 0.35 0.91 3.00 

Table 7.   MOEs and Mission Parameters for Maximum KVTP. 
KVTP—fraction of VTs killed, EPP—fraction of engagements performed, MEP—

fraction of munitions expended, EMT—expected mission time (minutes). 
Unlimited classification window for Hasty PS assumes that the operator perceives a 
classification window of twice the reference time (2min), though the classification 

window is not truncated after 2min. 
RS uses neutral firing policy and does not follow a γ -firing policy. 

 

For both the Persistent and Random shooters, increasing the number of 

engagements and shortening the classification window increases the KVTP. The Random 

shooter, who is Balanced or Hasty reaches his maximum KVTP at 10 engagements (in 

this case T is very short, see Table 7). Further increase of the number of engagements, by 

shortening the classification window even more, results in inferior KVTP. This maximum 

represents a balance between speed and accuracy. In this scenario, where the density of 

VTs is very low, speed is more important than accuracy. This fact is the reason for the 

higher maximum performance of a Hasty RS over a Hesitant RS. Notice that the Random 

shooters are expected to execute less than half of their engagements due to munitions 

shortage (EPP<0.5 in Table 7). 

The Balanced PS reaches his maximum KVTP when the firing policy is set to 

cautious ( 0γ = ). Using this policy, allows more time to be spent on classification rather 

than shooting (recall that each shot requires 30secFμ = , on average). It also makes it 

less likely that the operator will shoot at WTs and therefore reduces collateral damage 
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and waste of munitions. This result is different than the results presented in Table 6. For 

the result displayed in Table 6, greedy firing policy is maximizing the KVTP as the 

classification window is not adjusted to maximize the usage of the time available for the 

mission (3 minutes), and there is enough time for shooting more at each attack. Since the 

scenario is munitions-rich (there are many munitions compared with the number of 

targets and the time to shoot them, see low MEP values in Table 6), shooting more only 

contributes to the KVTP, as no early termination of the mission due to munitions shortage 

will occur. The Hesitant PS maximizes his KVTP when the firing policy is set to greedy 

( 1γ = ). Since the Hesitant operator tends not to decide, and there are enough munitions, 

greedy firing policy guarantees more shots (higher MEP in Table 7). However, in this 

case, less time can be spent on classification. The balance of speed and accuracy causes 

the maximum KVTP. of the Hesitant PS to be inferior compared with the Balanced PS.  

We also notice that the maximum probability of killing the launcher by the 

Persistent shooter is about 0.7, only 17% higher than the Random shooter, whose 

probability of killing the VT is about 0.6. In a munitions-rich, low VT density scenario, 

we don't observe a very large advantage of the Persistent shooter over the Random 

shooter. This is quite surprising due to the clear operational advantage of Persistent 

shooting tactics. However, the Random shooters shoot much more (see higher MEP in 

Table 7) than the Persistent shooters, which results in more collateral damage. 

Based on the results above, the planner should decide on a robust mission plan, 

not knowing if stress will be experienced by the operator and will cause him to be Hasty 

or Hesitant. Although operators of all three types can achieve similar KVTP in a given 

scenario, this performance is achieved under different mission plans, with different firing 

policies and classification windows (see Table 7). If operator’s stress is significant, then 

no one mission plan can guarantee higher KVTP over the nominal plan, the outcomes of 

which are displayed in Table 6 (M=4, T=1, N=4, 0γ = ), or over a mission with 

engagements without classification at all (KVTP=0.64). 

A compromise, which yields small improvement (about 10%) over the nominal 

plan for Balanced operator is to allocate N=5 engagements with a classification window 

of T=27 seconds and use the greedy policy ( 1γ = ). This policy maintains the KVTP 
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value of the nominal plan if stress makes the operator Hesitant, and degrades it (about 

18%), if the operator turns Hasty. The expected time to complete 4 engagements for a 

Hesitant operator is approximately 3 minutes. The performance in this case for Expert 

operator is presented in Table 8. 

 

Speed N γ KVTP EPP MEP EMT
Balanced 5 1 0.66 0.91 0.70 2.57
Hasty 5 1 0.51 0.91 0.71 1.81
Hesitant 4 1 0.61 0.89 0.79 2.98

Table 8.   MOEs for Scenario A with T=27sec. 
KVTP—fraction of VTs killed, EPP—fraction of engagements performed, MEP—

fraction of munitions expended, EMT—expected mission time (minutes). 

 

4. Achieving Higher KVTP with Technological Improvements 

When the engagements do not include a classification process, each engagement 

is shorter and therefore we can assume that there will be always enough time to shoot all 

M = 4 munitions. Since there are K = 5 possible target sites, the probability of killing the 

launcher, if each site is attacked with one munition is 0.8p. We assume that increasing the 

number of munitions is not possible due to design constraints of the UCAV. 

Seeking to improve the performance in this scenario, two technological 

improvements are suggested: 

1. Improved Electro-optical Payload (IEP): operators will have higher q∞ . 
Expert operators will have 0.97q∞ = . 

2. Improved Lethality Munitions (ILM): munitions have higher kill 
probability and more noticeable effect on the target. With the new 
weapon, the probability of kill is 0.95p =  and the probability that there is 
a clear evidence of a kill is 0.95b = . The additional weight of this weapon 
will reduce the capability of the UCAV to carrying only two munitions of 
this type. 

With the heavier munitions, the UCAV shoots less. Thus, more time is available 

for classification, and the classification window can be longer than 27 seconds. Adjusting 

the expected mission time to be similar to that of a Balanced operator in the previous  
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mission plan (M=4, T=27 seconds, γ =1,N=5, see Table 8), a classification window of 

40 seconds was chosen. The mission performance of Expert operators, given the 

improvements, is displayed in Table 9. 

 
Modification Speed γ KVTP EPP MEP EMT

Balanced 1 0.66 0.91 0.70 2.57
Hasty 1 0.51 0.91 0.71 1.81None 
Hesitant 1 0.61 0.89 0.79 2.98

0 0.69 0.94 0.60 2.35Balanced 
1 0.70 0.91 0.69 2.53

Hasty NA 0.53 0.91 0.70 1.79
0 0.36 0.98 0.29 1.95

0.5 0.45 0.98 0.44 2.25

IEP 

Hesitant 
1 0.63 0.89 0.77 2.95
0 0.65 0.82 0.77 2.57Balanced 
1 0.63 0.75 0.84 2.65

Hasty 1 0.46 0.75 0.85 1.50
0 0.36 0.95 0.40 2.50

0.5 0.43 0.95 0.59 2.72

ILM 

Hesitant 
1 0.53 0.71 0.92 3.11
0 0.71 0.84 0.74 2.54Balanced 
1 0.69 0.77 0.82 2.63

Hasty 1 0.48 0.76 0.84 1.49
0 0.38 0.95 0.37 2.46

0.5 0.47 0.95 0.57 2.69

IEP+ILM 

Hesitant 
1 0.56 0.72 0.91 3.10

Table 9.   MOEs for Scenario A with Technological Improvements. 
KVTP—fraction of VTs killed, EPP—fraction of engagements performed, MEP—

fraction of munitions expended, EMT—expected mission time (minutes). 
ILM is implemented with classification window of 40 seconds. In all other cases the 

classification window is of 27 seconds. 
 

ILM degrades the performance as there are fewer munitions, and the mission is 

more likely to terminate before all the engagements are performed due to munitions 

shortage (lower EPP). Thus, munitions with increased performance, but higher weight do 

not improve the KVTP. They do enable a longer classification window, and therefore may 

reduce the effect of time stress. Therefore, it may reduce also the chance for a change in 

operator’s behavior, and thus maintain the Balanced operator's performance. 
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IEP slightly increases the KVTP (compare with Table 8) of the operators. 

Operators under stress, however, are not much benefited from the improved payload. 

Hasty operator (increase of 4% in the KVTP) decides too fast, before the payload 

contributes much. The Hesitant operator (increase of 3%) does not decide a lot, so the 

improved performance of decisions does not contribute much. Additional contribution 

may be in less stress, as the mission becomes easier with the improved sensor.  

The combination of IEP and ILM does not seem to improve much the KVTP 

compared with the situation where only IEP is implemented. It actually degrades the 

KVTP of Hasty and Hesitant operators (Table 9). However, the combination may reduce 

the effect of time stress and therefore may avoid Hasty and Hesitant behaviors. In any 

case, the suggested technological improvements, which enhance the classification and 

shooting capabilities, do not significantly increase the performance of the HK with 

respect to the KVTP (3%-6% for the cases of maximum increase in KVTP. Compare 

Table 9 and Table 8). The reason is lack of time. 

Another result is that unlike the munitions-rich scenario, when having only two 

munitions available, cautious rather than greedy firing policy maximizes the KVTP of 

Balanced operator (compare with the baseline plan results in Table 6). This is due to early 

termination of the mission because of munitions shortage (EPP=0.75). However, for 

Hesitant operators, the greedy policy is still preferable in this scenario (KVTP of 0.56 

with 1γ =  and only 0.38 with 0γ = ). 

 

C. SCENARIO B: AMBUSHING SAM BATTERIES 

1. Operational Setting 
Synthetic Aperture Radar (SAR) imagery revealed a possible hostile mobile 

surface-to-air (SAM) battery in ambush along a planned intrusion route for a deep strike 

mission. The deep strike is scheduled within one hour. It is assumed that due to the high 

concealment under vegetation and radio silence, the hostile SAM battery will not move 

until the attack. It is known that the enemy's SAM batteries consist of six TELAR (see 

glossary) vehicles. Nevertheless, the image revealed eight suspect vehicles deployed. 

Figure 16 presents a schematic illustration of this scenario. 
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Figure 16.   Schematic illustration of scenario B theater. 

Each TELAR marks a site for classification. Dummy TELER is in Reddish Shade. 
 

A UCAV loitering above the area is sent to clear the route before the attack. The 

time allocated for this mission is 45 minutes. The UCAV is carrying only four munitions, 

and due to operational constrains, only one replacement, with another UCAV carrying 

another load of four munitions, can be carried out before the strike operation begins. 

Hence, there are only eight munitions available for the mission. 

Table 10 presents the parameter for this mission. 

 

E K KVT Cμ  TRef q∞  Pμ  Fμ  p b 

45 8 6 4 2 0.9 0.3 0.3 0.8 0.8 

Table 10.   Nominal Parameters for scenario B. 
Cμ —expected time between engagements (see Section C in Chapter IV), Pμ —expected 
duration of preceding preparations for an attack (see Section D in Chapter III), Fμ —

expected duration of each shot (see Section D in Chapter III), Tref—reference 
classification window for normal operational conditions (see Section C in Chapter II), 
q∞ —the limiting probability of correct classification for Expert operator (see Section C 
in Chapter II), p—the single shot kill probability, b—the probability that a target emits 

signs of being killed following a kill. 
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2. Baseline Mission Plan 

Assume that the operator is Balanced Expert and using Persistent shooting tactic. 

The mission planner first allocates all the available munitions, M=8. When using the 

reference time for the classification window, T = Tref = 2min, the number of engagements 

that can be performed before the EMT exceeds E, is exactly eight, which means that all 

the sites can be engaged by a Persistent shooter. The performance in this case is presented 

in Table 11. 

 

γ     MOE KVTP EPPMEP EMT
0 0.74 0.96 0.85 43.75
1 0.75 0.95 0.88 43.86

Table 11.   MOEs for Scenario B with T=2min. 
KVTP—fraction of VTs killed, EPP—fraction of engagements performed, MEP—

fraction of munitions expended, EMT—expected mission time (minutes). 
N=8 engagements. 

 

We see a balanced plan, in which many of the munitions are fired (high MEP), the 

engagements are almost fully exhausted (high EPP), and it yields reasonably good 

expected results of killing 75% of the VTs (KVTP). The expected time of the mission, 

however, is quite close to the deadline of 45 minutes (EMT), which is undesirable. 

Engagements with no classifications, in which the eight sites are attacked with 

one munition each, yields KVTP of 0.8, as all the VTs are engaged, and each is killed 

with probability 0.8. This performance is better than the performance displayed in Table 

11 (with a price of firing more munitions, and causing more collateral damage). The 

expected mission time of such a tactic is 36.80 minutes. 

3. When More Munitions Are Available 

In the case above a lot of the munitions are expended (MEP=0.88). This 

observation suggests that additional munitions may improve the performance, and 

increase the KVTP. Suppose that another UCAV replacement is possible, so the number 

of munitions, available and allocated, is increases by 50% to 12. 

Table 12 indicates that there is some improvement in the KVTP (0.81 vs. 0.75) for 

more munitions (8%), as most of them are not in use, as there is a reduction in the 
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fraction of munitions expended (MEP). The UCAV with the additional munitions is 

expected to kill 80% of the VTs—as good as in the case of engagements without any 

classification. The time restriction becomes even more problematic. A few long 

engagements may easily cause a failure to complete the mission on time. 

 
M γ KVTP EPP MEP EMT
8 1 0.75 0.95 0.88 43.86
12 1 0.81 1.00 0.68 44.28

Table 12.   MOEs for Scenario B with eight and 12 munitions. 
KVTP—fraction of VTs killed, EPP—fraction of engagements performed, MEP—

fraction of munitions expended, EMT—expected mission time (minutes). 
N=8 engagements. T=2 minutes. 

 

In order to cope with the time restriction, the planner may reduce the number of 

engagements by one, or shorten the classification window. Table 13 displays the mission 

performance for combinations of shorter classification window and one fewer 

engagement with and without additional ammunition. The classification window is 

reduced to 7/8 of its original length—the same ratio of the reduction in the number of 

engagements. We assume that this minor reduction in the classification window will not 

induce effective stress on the operator. Clearly, no much reduction in the mission time is 

achieved by these techniques, as the changes are quite minor—about one minute is 

shaved from the expected mission time. The KVTP is not much degraded as well. Short 

classification window with additional munitions and cautious firing policy (plan 7 in 

Table 13) can maintain half of the improvement in KVTP gained by the additional 

munitions, and keep a margin of 2 minutes from the mission deadline. Thus, this is the 

preferable mission plan. 

4. When Time Is Not a Significant Constraint 

Suppose now that the strike mission can be delayed, and the UCAV can get much 

more time for the mission. Previously the time was adequate for exactly eight 

engagements. Additional time allows  longer classifications, and more shootings. The 

planner thus does  not pose  any classification window. We assume that in such a case, a 

classification window of twice the reference time, Tref, is perceived as infinite for the 

scaling of the decision duration function. Thus, the operators will perceive the unlimited 
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classification time as if they have four minutes to decide. In this case, the operators 

almost reach their performance limits. The infinite Classification Window is modeled by 

using a classification window ten times larger than the perceived infinite classification 

time, i.e., 40 minutes long. This is practically infinite for computing the probabilities, as 

the area under the tail of the density function of the decision time is negligible. 

 
Plan M T N γ KVTP EPPMEP EMT

0 0.74 0.96 0.85 43.75Reference 8 2 8 
1 0.75 0.95 0.88 43.86

1 0 0.66 0.98 0.78 42.59
2 

8 2 7 
1 0.68 0.97 0.81 42.72

3 0 0.69 1.00 0.58 42.81
4 

12 2 7 
1 0.72 1.00 0.61 42.99

5 0 0.73 0.96 0.85 42.69
6 

8 1.75 8 
1 0.73 0.95 0.87 42.80

7 0 0.78 1.00 0.65 43.03
8 

12 1.75 8 
1 0.80 1.00 0.68 43.21

Table 13.   MOEs for Scenario B with Shorter Mission Time. 
KVTP—fraction of VTs killed, EPP—fraction of engagements performed, MEP—

fraction of munitions expended, EMT—expected mission time (minutes). 
Reference case refers to Table 11. Operator is Expert PS. 

 

Table 14 presents the MOEs values, the expected time spent on classification, and 

the standard error of the time spent on classification for different classification windows. 

Notice that when greedy firing policy is used, Hesitant operator always performs 

better in terms of KVTP than the other operators. The reason can be understood 

intuitively as follows: When there is a finite classification window, the Hesitant operator 

does not make many decisions, and fires when he doesn't make a decision. When he does 

make a decision, the decision is usually accurate—fire at a VT. Hesitant operator gets to 

fire more (higher MEP) than the Balanced and the Hasty operators. Since there are many 

munitions, and the density of VTs is very high, he attacks more VTs. When the 

classification window is unbounded, Hesitant will take his time, and when he decides, he 

decided more accurately than operators with other speed of performance. An almost 

abnormality of this situation can be seen when the classification window is finite. The 

Hesitant operator will be as accurate as his skill level allows when making a decision. 
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However, there will be cases where he makes no decisions. In these cases, he attacks due 

to the greedy firing policy. Thus, he attacks more in the case where the classification 

window is bounded than in the case where the classification window is unbounded. 

Because of the high density of VTs, and availability of munitions, when he shoots 

without a decision he is likely to kill a VT, and the performance in terms of KVTP is 

better when the finite window is applied than in the unbounded classification window 

case. As the window gets longer, the decisions of the Hesitant operator become better, 

and thus the overall performance gets better up to a point when the classification 

decisions are as accurate as possible. Lengthening further the classification window at 

this point will reduce the number of shots without improving much the quality of the 

decisions, resulting in inferior overall performance. 

 
T Speed Mean Std γ  KVTP EPP MEP EMT 

Balanced 7.16 1.20 1 0.80 1.00 0.68 43.21 
Hasty 2.10 0.35 NA 0.63 1.00 0.57 37.53 1.75 min 
Hesitant 11.20 1.20 1 0.89 0.99 0.80 48.00 
Balanced 8.18 1.37 1 0.81 1.00 0.68 44.28 
Hasty 2.40 0.40 NA 0.64 1.00 0.58 37.87 2 min 
Hesitant 12.80 1.37 1 0.90 0.99 0.80 49.61 
Balanced 16.80 3.17 1 0.86 1.00 0.68 52.92 
Hasty 4.80 0.81 NA 0.73 1.00 0.62 40.53 Unbounded 
Hesitant 32.80 6.33 1 0.88 1.00 0.69 68.97 
Balanced 16.36 2.73 1 0.87 1.00 0.71 52.61 
Hasty 4.80 0.81 NA 0.73 1.00 0.62 40.53 4 min 
Hesitant 25.60 2.74 1 0.92 0.99 0.81 62.46 

Table 14.   MOEs for Scenario B with Different Classification Windows. 
Mean refers to mean time spent on classifying targets in the mission. Std stands for 

standard deviation of time spent on classifying. KVTP—fraction of VTs killed, EPP—
fraction of engagements performed, MEP—fraction of munitions expended, EMT—

expected mission time (minutes). 
There are eight targets, six of which are VTs and 12 Munitions available. 

 

For Hesitant operator and for Balanced operator, when the classification window 

is long enough, the KVTP is higher than the case of engagements without classification 

(0.8). Thus, when the time is not a significant constraint, the classification contributes to 

the mission success. 



77 

Another result worth noticing is that even when the time is not a constraint, 

applying a long finite classification window does not degrade the KVTP (in this specific 

scenario it even improves it), and significantly decreases the variability of the 

classification time of Balanced and Hesitant operators. When time is a constraint, this 

control of variability helps make sure that the mission will end on time. 

5. When Resources Become Scarce 

Assume now that the attack is suddenly expedited, and only 35 minutes are 

available for the UCAV mission. In addition, the UCAV carries only four munitions, and 

there is no other available UCAV to reinforce. Thus the mission planner allocates only 

M=4 munitions for the mission. In this case the mission becomes resource-scarce. 

As the time is really tight, the planner should choose if the mission will consist of 

short classification windows and many engagements or of longer classification windows 

and fewer engagements. Assume that the planner knows the skills and speed of the 

operator involved in the mission, and can adjust the classification window such that the 

expected mission time will be 35 minutes. 

Figure 17 displays the mission performance in term of KVTP for different mission 

plans for different types of operators; the mission performance for the Random shooter is 

displayed for reference. Greedy firing policy is used for all, as it turns out to be the best 

according to our model (due to the high density of VTs and low number of WTs). 

For engagements without classification process, there is a probability 0.21 that all 

four engagements will engage a VT, a probability 0.57 that three VTs will be engaged, 

and a probability 0.21 that only two VTs will be engaged. The KVTP for this mission 

plan is 0.4. Lower than the case with classification. The expected mission time is 18.40 

minutes. When the munitions are a scarce resource, the classifications contribute to the 

mission performance. 

When the classification Window is unbounded, a Hesitant operator can have four 

engagements, Hasty operator can have seven engagements and Balanced operator can 

have five engagements. A Persistent shooter achieves higher performance than that of a 

random shooter. Nevertheless, the behavior of the KVTP as a function of the number of 

engagements is similar for the two shooting tactics. Trying to engage all the sites 
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degrades the mission performance. For Balanced PS, six engagements maximizes the 

performance. For Hesitant or Hasty operators, seven engagements maximizes the 

performance. 

When trying to engage all the targets (N=8), Hesitant PS performs better than 

Balanced or Hasty operators in terms of KVTP. When the classification window is very 

short, the decisions of the operators are not very good. In a scenario with high VT 

density, even when munitions are in shortage, it is better to shoot than to classify if the 

classification quality is not high enough. A Hesitant operator shoots more than the other 

operators in this case, when the greedy firing policy is used. 

 

  
Figure 17.   Expected Fraction of Killed VTs vs. the Number of Engagements. 

 

Notice that unlike the resource-rich case (Table 14), here, Hasty operator has 

higher maximum performance than Hesitant operator. In a resource-scarce scenario with 

high density of VTs, it turns that it is better to trade accuracy for speed. Notice, however, 

that the difference in the maximum performance of the different types of operators is 

relatively minor. 
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6. When Density Decreases 

Assume now that intelligence report arrived just before the UCAV is sent, 

informing that the deployed SAM battery is likely to miss two TELARs which are found 

in a workshop due to technical failures. The mission planner concludes that there are only 

four VTs among the eight objects. 

Again the planner is interested in setting a classification window and a firing 

policy. Consider first the resource-rich case. Assume that, again, the time constraint may 

be removed, and up to 12 munitions can be fired in the mission. The mission now is 

resource-rich. Table 15 presents the performance under different classification windows. 

Table 16 presents the relative change in the MOE values compared with the high VT 

density scenario (see Table 14). 

 

Classification 
window Speed Mean Std γ  KVTP EPP MEP EMT 

Balanced 7.14 1.20 1.00 0.81 1.00 0.56 42.42 
Hasty 2.08 0.35 NA 0.63 1.00 0.51 37.15 1.75 min 
Hesitant 11.18 1.19 1 0.90 0.99 0.71 47.21 
Balanced 8.16 1.36 1 0.82 1.00 0.56 43.44 
Hasty 2.40 0.41 NA 0.65 1.00 0.51 37.45 2 min 
Hesitant 12.82 1.37 1 0.91 0.99 0.71 48.77 
Balanced 16.80 3.17 1 0.87 1.00 0.52 51.89 
Hasty 4.80 0.82 NA 0.73 1.00 0.52 39.87 Unbounded 
Hesitant 32.80 6.33 1 0.89 1.00 0.51 67.86 
Balanced 16.38 2.73 1 0.87 1.00 0.56 51.53 
Hasty 4.80 0.82 NA 0.73 1.00 0.52 39.87 4 min 
Hesitant 25.58 2.74 1 0.93 0.99 0.71 61.25 

Table 15.   MOEs for Scenario B with Different Classification Windows, Mediocre VT 
Density. 

Mean refers to mean time spent on classifying targets in the mission. Std stands for 
standard deviation of time spent on classifying. KVTP—fraction of VTs killed, EPP—
fraction of engagements performed, MEP—fraction of munitions expended, EMT—

expected mission time (minutes). 
There are eight targets, six of which are VTs and 12 Munitions available. 

 

There is almost no change in the classification duration or in KVTP. Since there 

are fewer VTs, the operators shoot less (MEP); this is particularly true for the Balance  
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operator, whose decisions are influenced more by the scenario. This is because the 

Balanced operator is making fewer mistakes than Hasty operator and more decisions than 

Hesitant operator. 

Assume again that the strike is expedited. The scenario has now less resources. 

Recall that in scenario A (Section B above), when the scenario was limited in resources 

and had very low VT density, the firing policy that yielded better results (higher KVTP, 

see Table 7) was not greedy. Figure 18 presents the KVTP as a function of the number of 

engagements for each operator with adjusted classification windows. 

Notice that the expected performance in terms of KVTP is higher for the lower 

density case for all operators (compared with Figure 17). That is due to the fact that there 

are more munitions per VT, allowing the UCAV to kill more of the VTs. An interesting 

result is that in this scenario, similar to scenario A with the low VT density, Balanced 

operator maximizes his KVTP with cautious firing policy. The Hesitant operator still 

performs better with the greedy firing policy. Another interesting result is the shift of 

maximum KVTP of Hesitant operator to six engagements. When the density of VTs is 

lower, it is more important for the Hesitant operator to be more accurate, rather than 

being able to shoot at one more target. There is not enough time for shooting more, as the 

gain in terms of killed VTs from shooting at one more target is lower in a less dense 

scenario. 
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Classification 
window Speed Mean Std γ  KVTP EPP MEP EMT 

Balanced 0% 0% 1 1% 0% -18% -2% 
Hasty 0% 0% NA 0% 0% -11% -1% 1.75 min 
Hesitant 0% 0% 1 1% 0% -11% -2% 
Balanced 0% 0% 1 1% 0% -18% -2% 
Hasty 0% 1% NA 2% 0% -12% -1% 2 min 
Hesitant 0% 0% 1 1% 0% -11% -2% 
Balanced 0% 0% 1 1% 0% -24% -2% 
Hasty 0% 1% NA 0% 0% -16% -2% Unbounded 
Hesitant 0% 0% 1 1% 0% -26% -2% 
Balanced 0% 0% 1 0% 0% -21% -2% 
Hasty 0% 1% NA 0% 0% -16% -2% 4 min 
Hesitant 0% 0% 1 1% 0% -12% -2% 

Table 16.   Change in MOEs for Scenario B with Lower VT Density. 
Mean refers to mean time spent on classifying targets in the mission. Std stands for 

standard deviation of time spent on classifying. KVTP—fraction of VTs killed, EPP—
fraction of engagements performed, MEP—fraction of munitions expended, EMT—

expected mission time (minutes). 
Reference values are shown in Table 14. 

 

In this case, as well, Hasty operator performs slightly better than the Hesitant 

operator. We may conclude that when time is very scarce, it is worthwhile to trade 

accuracy with speed even when the density of VTs is not very high (50% in this 

scenario). This is in agreement with scenario A iin the previous Section, where the 

density of VTs is very low (20%). 

 



82 

  
Figure 18.   Expected Fraction of  VTs Killed vs. the Number of Engagements. 
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VI. SUMMARY AND CONCLUSIONS 

In this chapter, we highlight the modeling contributions in this thesis and discuss 

some important operational insights regarding Hunter-Killer missions using persistent 

shooting tactic. 

 

A. MODELING CONTRIBUTION 
In this thesis we extend previous research on stand-off precision fire to account 

for human factors and decision making in an integrated fire engagement model. The 

suggested model covers two phases in the mission of a hunter-killer: the planning phase 

and the execution phase. The planning phase allows a mission planner to set decision 

variables, which control the way the HK executes the mission in order to maximize his 

expected performance subject to operational constraints. In the execution phase the HK 

engages target sites, where each engagement comprises a target acquisition 

(classification) process, which may lead to a shooting process according to the shooting 

policy. The shooting process is governed by parameters that can be dynamically updated 

during the mission.  

The effect of time on the mission performance is manifested in two interrelated 

challenges. First, the duration of the mission is constrained by operational considerations. 

Therefore, the challenge at the mission level is to balance between the number of 

engagements that can be fit into the mission time frame and the effectiveness of a single 

engagement. Longer engagements are more effective but fewer of them can be executed 

in a given time window. At the engagement level time stress affects the capabilities and 

performance of the operator and the challenge is to determine the classification window 

due gives the best “bang (kill rate) for bucks (time)”. 

Data from field experiments and operational activity can be collected to estimate 

model parameters; in this way aspects of real-world operations may be examined. 
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B. THE EFFECT OF SCENARIO CHARACTERISTICS ON THE MISSION 
PARAMETERS 

A scenario is characterized by the number of target sites, number of valuable 

targets and the signature, vulnerability and time sensitivity of these targets. These 

characteristics affect the resources needed to engage the targets and the tactic that is used.  

The scarcest resource in time-sensitive scenarios is time; the mission must be completed 

within a short period of time. In other scenarios the supply of munitions may be the 

critical component in the mission plan, when operational and logistical constraints limit 

the supply of munitions. Scenarios with low density of valuable targets or where targets 

are well concealed or camouflaged affect the effectiveness and efficiency of the mission 

because the targets are difficult to acquire.  

The operational scenarios, which are explored in Chapter V, differ in the 

availability of mission resources, in the density of valuable targets, and in the number of 

sites involved. The Available time, affects the number of engagements that are assigned 

to the HK, the length of the classification window and the firing policy chosen. The 

amount of munitions and the number of VTs, (relative to the number of sites) influence 

the firing policy and the balance between accuracy and speed in the mission plan. 

 

C. EFFECTS OF THE CLASSIFICATION WINDOW 
The classification window has three effects on the mission. First, it limits the 

accuracy of the classification. Second, it may cause time stress that changes the operator's 

behavior, such that his speed of performance is changed, and third, shorter classification 

window facilitates more engagements in the limited time allocated for the mission. 

In scarce-resource scenarios (both time and ammunition), when the density of 

VTs is at least 50% (scenario B in Chapter V), a balance between the classification 

accuracy and speed, that is a balance between the number of engagements and the length 

of the classification window, can maximize the performance in the mission. This 

observation, and the fact that time stress may reduce the effectiveness of the classification 

process (see Chapter V where the Balanced operator achieves higher mission 

performance in all the scenarios), imply that longer classification windows are more 

desirable, even though the number of possible engagements may be reduced. 
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D. EFFECTS OF FIRING POLICY 

The firing policy affects the mission performance in three aspects. First, greedier 

firing policy (i.e., larger value of γ ) makes the shooter (especially the Hesitant shooter) 

attack more often, and thus in resource-rich scenarios—both ammunition and time—it 

increases the expected number of VTs killed. Second, attacking more often reduces the 

munitions efficiency because more WTs are attacked and fewer munitions are available 

for attacking the VTs. In resource-scarce scenarios, inefficient consumption of munitions 

degrades the KVTP, due to early mission termination, caused by munitions shortage. 

Third, attacking more often increases the time spent on shooting in the mission. 

Therefore there is less time available for classification, which may induce shorter 

classification windows, with their consequences—possible stress, and degraded 

classification accuracy. 

We observe a need to balance and adjust the firing policy according to the density 

of VTs in the scenario, the availability of resources and the type of the operator. Hesitant 

operator should use, in general, greedy firing policy in all the cases that were examined in 

our analysis. Balanced operator should use cautious firing policy in resource-scarce 

scenarios, and greedy firing policies in others. 

 

E. EFFECTIVE MISSION PLAN 
The conflicting effects of the decision parameters, and their dependency on the 

operational scenario, demand a careful planning procedure to achieve a robust and 

effective mission plan. 

We showed that the operational effectiveness of Hunter-Killers can be 

significantly increased by an appropriate allocation of time and munitions for the 

mission, and by carefully controling the tactical parameters such as the classification 

window and the firing policy. Robust mission planning should take into account 

uncertainties in the operator's performance, and avoid point optimization. 
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